2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1

上傳人:彩*** 文檔編號(hào):104605114 上傳時(shí)間:2022-06-10 格式:DOC 頁(yè)數(shù):8 大?。?77KB
收藏 版權(quán)申訴 舉報(bào) 下載
2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1_第1頁(yè)
第1頁(yè) / 共8頁(yè)
2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1_第2頁(yè)
第2頁(yè) / 共8頁(yè)
2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1_第3頁(yè)
第3頁(yè) / 共8頁(yè)

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018版高中數(shù)學(xué) 第一章 常用邏輯用語(yǔ)疑難規(guī)律方法學(xué)案 北師大版選修1-1(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 第一章 常用邏輯用語(yǔ) 1 解邏輯用語(yǔ)問(wèn)題的三絕招 1.化為集合——理清關(guān)系 充分(必要)條件是高中學(xué)段的一個(gè)重要概念,并且是理解上的一個(gè)難點(diǎn).要解決這個(gè)難點(diǎn),將抽象的概念用直觀、形象的圖形表示出來(lái),看得見(jiàn)、想得通,才是最好的方法.本節(jié)使用集合模型對(duì)充要條件的外延與內(nèi)涵作了直觀形象的解釋,實(shí)踐證明效果較好.集合模型解釋如下: ①A是B的充分條件,即A?B.(如圖1) ②A是B的必要條件,即B?A.(如圖2) ③A是B的充要條件,即A=B.(如圖3)    圖1       圖2      圖3 ④A是B的既不充分又不必要條件,即A∩B=?或A、B既有公共元素也有非

2、公共元素. 或 例1 “x2-3x+2≥0”是“x≥1”的________________條件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”) 解析 設(shè)命題p:“x2-3x+2≥0”,q:“x≥1”對(duì)應(yīng)的集合分別為A、B,則A={x|x≤1或x≥2},B={x|x≥1},顯然“A?B,B?A”,因此“x2-3x+2≥0”是“x≥1”的既不充分又不必要條件. 答案 既不充分又不必要 2.抓住量詞——對(duì)癥下藥 全稱命題與特稱命題是兩類特殊的命題,這兩類命題的否定又是這部分內(nèi)容中的重要概念,解決有關(guān)此類命題的題目時(shí)一定要抓住決定命題性質(zhì)的量詞,理解其相應(yīng)的含義,從而

3、對(duì)癥下藥. 例2 (1)已知命題p:“任意x∈[1,2],x2-a≥0”,與命題q:“存在x∈R,x2+2ax+2+a=0”都是真命題,則實(shí)數(shù)a的取值范圍為_(kāi)_____________. (2)已知命題p:“存在x∈[1,2],x2-a≥0”與命題q:“存在x∈R,x2+2ax+2+a=0”都是真命題,則實(shí)數(shù)a的取值范圍為_(kāi)___________. 解析 (1)將命題p轉(zhuǎn)化為“當(dāng)x∈[1,2]時(shí), (x2-a)min≥0”,即1-a≥0,即a≤1. 命題q:即方程有解,Δ=(2a)2-4×(2+a)≥0, 解得a≤-1或a≥2.綜上所述,a≤-1. (2)將命題p轉(zhuǎn)化為當(dāng)x∈[1

4、,2]時(shí),(x2-a)max≥0, 即4-a≥0,即a≤4.命題q同(1). 綜上所述a≤-1或2≤a≤4. 答案 (1)(-∞,-1] (2)(-∞,-1]∪[2,4] 點(diǎn)評(píng) 認(rèn)真比較兩題就會(huì)發(fā)現(xiàn),兩題形似而神異,所謂失之毫厘,謬之千里,需要我們抓住這類問(wèn)題的本質(zhì)——量詞,有的放矢. 3.等價(jià)轉(zhuǎn)化——提高速度 在四種命題的關(guān)系、充要條件、簡(jiǎn)單的邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞中,時(shí)時(shí)刻刻滲透著等價(jià)轉(zhuǎn)化思想,例如互為逆否命題的兩個(gè)命題(原命題與逆否命題或逆命題與否命題)一定同真或同假,它們就是等價(jià)的;但原命題與逆命題不等價(jià),即原命題為真,其逆命題不一定為真. 例3 設(shè)p:q:x2+

5、y2≤r2 (r>0),若q是綈p的充分不必要條件,求r的取值范圍. 分析 “q是綈p的充分不必要條件”等價(jià)于“p是綈q的充分不必要條件”.設(shè)p、q對(duì)應(yīng)的集合分別為A、B,則可由A?RB出發(fā)解題. 解 設(shè)p、q對(duì)應(yīng)的集合分別為A、B,將本題背景放到直角坐標(biāo)系中,則點(diǎn)集A表示平面區(qū)域,點(diǎn)集?RB表示到原點(diǎn)距離大于r的點(diǎn)的集合,即圓x2+y2=r2外的點(diǎn)的集合. ∵A?RB表示區(qū)域A內(nèi)的點(diǎn)到原點(diǎn)的最近距離大于r, ∴直線3x+4y-12=0上的點(diǎn)到原點(diǎn)的最近距離大于r, ∵原點(diǎn)O到直線3x+4y-12=0的距離 d==,∴r的取值范圍為0

6、分不必要條件即為x2+y2≤r2 (r>0)在p:所對(duì)應(yīng)的區(qū)域的外部,也是可以解決的.但以上解法將“q是綈p的充分不必要條件”等價(jià)轉(zhuǎn)化為“p是綈q的充分不必要條件”,更好地體現(xiàn)了相應(yīng)的數(shù)學(xué)思想方法. 2 命題的否定與否命題辨與析 否命題與命題的否定是邏輯關(guān)系中的兩個(gè)相似知識(shí)點(diǎn),但又有著本質(zhì)的區(qū)別,應(yīng)注意弄清它們的區(qū)別和正確表述,下面從以下兩個(gè)方面來(lái)看一下它們的區(qū)別. 1.否命題與命題的否定的概念 設(shè)命題“若A,則B”為原命題,那么“若綈A,則綈B”為原命題的否命題,“若A,則綈B”為原命題的否定.所以從概念上看“否命題”是對(duì)原命題的條件和結(jié)論同時(shí)否定后得到的新命題,而且否定的條

7、件仍為條件,否定的結(jié)論仍為結(jié)論.“命題的否定”是對(duì)原命題結(jié)論的全盤否定,即“命題的否定”與原命題的條件相同,結(jié)論相反. 例1 寫出下列命題的否命題及否定: (1)若|x|+|y|=0,則x,y全為0; (2)函數(shù)y=x+b的值隨x的增加而增加. 分析 問(wèn)題(1)直接依據(jù)格式寫出相應(yīng)的命題;問(wèn)題(2)先改寫成“若A,則B”的形式,然后再寫出相應(yīng)的命題. 解 (1)原命題的條件為“|x|+|y|=0”,結(jié)論為“x,y全為0”. 寫原命題的否命題需同時(shí)否定條件和結(jié)論,所以原命題的否命題為“若|x|+|y|≠0,則x,y不全為0”. 寫原命題的否定只需否定結(jié)論,所以原命題的否定為“若|x

8、|+|y|=0,則x,y不全為0”. (2)原命題可以改寫為“若x增加,則函數(shù)y=x+b的值也隨之增加”. 否命題為“若x不增加,則函數(shù)y=x+b的值也不增加”; 命題的否定為“若x增加,則函數(shù)y=x+b的值不增加”. 2.否命題與命題的否定的真假 從命題的真假上看,原命題與其否命題的真假?zèng)]有必然的關(guān)系,原命題為真,其否命題可能為真,也可能為假;原命題為假,其否命題可能為真,也可能為假.但是原命題與其否定的真假必相反,原命題為真,則其否定為假;原命題為假,則其否定為真.這也可以作為檢驗(yàn)寫出的命題是否正確的標(biāo)準(zhǔn). 例2 寫出下列命題的否命題與命題的否定,并判斷原命題、否命題和命題的否

9、定的真假: (1)若x2<4,則-20且n>0,則m+n>0. 分析 依據(jù)定義分別寫出否命題與命題的否定.根據(jù)不等式及方程的性質(zhì)逐個(gè)判斷其真假. 解 (1)否命題:“若x2≥4,則x≥2或x≤-2”. 命題的否定:“若x2<4,則x≥2或x≤-2”. 通過(guò)解不等式可以知道,原命題為真,否命題為真,命題的否定為假. (2)否命題:“若m≤0或n≤0,則m+n≤0”. 命題的否定:“若m>0且n>0,則m+n≤0”. 由不等式的性質(zhì)可以知道,原命題為真,否命題為假,命題的否定為假. 3 走出邏輯用語(yǔ)中的誤區(qū) 誤區(qū)1 所有不等式、集合運(yùn)算式都不是

10、命題 例1 判斷下列語(yǔ)句是不是命題,若是命題,判斷其真假. (1)x+2>0;(2)x2+2>0; (3)A∩B=A∪B;(4)A?A∪B. 錯(cuò)解 (1)、(2)、(3)、(4)都不是命題. 剖析 (1)中含有未知數(shù)x,且x不定,所以x+2的值也不定,故無(wú)法判斷x+2>0是否成立,不能判斷其真假,故(1)不是命題; (2)x雖為未知數(shù),但x2≥0,所以x2+2≥2,故可判斷x2+2>0成立,故(2)為真命題. (3)若A=B,則A∩B=A∪B=A=B; 若AB,則A∩B=AA∪B=B. 由于A,B的關(guān)系未知,所以不能判斷其真假,故(3)不是命題. (4)A為A∪B的子集

11、,故A?A∪B成立,故(4)為真命題. 正解 (2)、(4)是命題,且都為真命題. 誤區(qū)2 原命題為真,其否命題必為假 例2 判斷下列命題的否命題的真假: (1)若a=0,則ab=0; (2)若a2>b2,則a>b. 錯(cuò)解 (1)因?yàn)樵}為真命題,故其否命題是假命題; (2)因?yàn)樵}為假命題,故其否命題為真命題. 剖析 否命題的真假與原命題的真假?zèng)]有關(guān)系,否命題的真假不能根據(jù)原命題的真假來(lái)判斷,應(yīng)先寫出命題的否命題,再判斷. 正解 (1)否命題為:若a≠0,則ab≠0,是假命題; (2)否命題為:若a2≤b2,則a≤b,是假命題. 誤區(qū)3 搞不清誰(shuí)是誰(shuí)的條件 例3 

12、使不等式x-3>0成立的一個(gè)充分不必要條件是(  ) A.x>3 B.x>4 C.x>2 D.x∈{1,2,3} 錯(cuò)解 由不等式x-3>0成立, 得x>3,顯然x>3?x>2, 又x>2D?/x>3,因此選C. 剖析 若p的一個(gè)充分不必要條件是q,則q?p,pD?/q.本題要求使不等式x-3>0成立的一個(gè)充分不必要條件,又x>4?x-3>0,而x-3>0D?/x>4,所以使不等式x-3>0成立的一個(gè)充分不必要條件為x>4. 正解 B 誤區(qū)4 用“且”“或”聯(lián)結(jié)命題時(shí)只聯(lián)結(jié)條件或結(jié)論 例4 (1)已知p:方程(x-11)(x-2)=0的根是x=11;q:方程(x-11)

13、(x-2)=0的根是x=2,試寫出“p或q”. (2)p:四條邊相等的四邊形是正方形;q:四個(gè)角相等的四邊形是正方形,試寫出“p且q”. 錯(cuò)解 (1)p或q:方程(x-11)(x-2)=0的根是x=11或x=2. (2)p且q:四條邊相等且四個(gè)角相等的四邊形是正方形. 剖析 (1)(2)兩題中p,q都是假命題,所以“p或q”,“p且q”也都應(yīng)是假命題.而上述解答中寫出的兩命題卻都是真命題.錯(cuò)誤原因是:(1)只聯(lián)結(jié)了兩個(gè)命題的結(jié)論;(2)只聯(lián)結(jié)了兩個(gè)命題的條件. 正解 (1)p或q:方程(x-11)(x-2)=0的根是x=11或方程(x-11)(x-2)=0的根是x=2. (2)p且

14、q:四條邊相等的四邊形是正方形且四個(gè)角相等的四邊形是正方形. 誤區(qū)5 不能正確否定結(jié)論 例5 p:方程x2-5x+6=0有兩個(gè)相等的實(shí)數(shù)根,試寫出“綈p”. 錯(cuò)解 綈p:方程x2-5x+6=0有兩個(gè)不相等的實(shí)數(shù)根. 剖析 命題p的結(jié)論為“有兩個(gè)相等的實(shí)數(shù)根”,所以“綈p”應(yīng)否定“有”,而不能否定“相等”. 正解 綈p:方程x2-5x+6=0沒(méi)有兩個(gè)相等的實(shí)數(shù)根. 誤區(qū)6 對(duì)含有一個(gè)量詞的命題否定不完全 例6 已知命題p:存在一個(gè)實(shí)數(shù)x,使得x2-x-2<0,寫出綈p. 錯(cuò)解一 綈p:存在一個(gè)實(shí)數(shù)x,使得x2-x-2≥0. 錯(cuò)解二 綈p:對(duì)任意的實(shí)數(shù)x,都有x2-x-2<0.

15、 剖析 該命題是特稱命題,其否定是全稱命題,但錯(cuò)解一中得到的綈p仍是特稱命題,顯然只對(duì)結(jié)論進(jìn)行了否定,而沒(méi)有對(duì)存在量詞進(jìn)行否定;錯(cuò)解二中只對(duì)存在量詞進(jìn)行了否定,而沒(méi)有對(duì)結(jié)論進(jìn)行否定. 正解 綈p:對(duì)任意的實(shí)數(shù)x,都有x2-x-2≥0. 誤區(qū)7 忽略了隱含的量詞 例7 寫出下列命題的否定: (1)不相交的兩條直線是平行直線; (2)奇函數(shù)的圖像關(guān)于y軸對(duì)稱. 錯(cuò)解 (1)不相交的兩條直線不是平行直線; (2)奇函數(shù)的圖像不關(guān)于y軸對(duì)稱. 剖析 以上錯(cuò)誤解答在于沒(méi)有看出這兩個(gè)命題都是全稱命題.對(duì)于一些量詞不明顯或不含有量詞,但其實(shí)質(zhì)只是在文字?jǐn)⑹錾鲜÷粤四承┝吭~的命題,要特別引起注

16、意. 正解 (1)存在不相交的兩條直線不是平行直線; (2)存在一個(gè)奇函數(shù)的圖像不關(guān)于y軸對(duì)稱. 4 解“邏輯”問(wèn)題需強(qiáng)化三意識(shí) 1.轉(zhuǎn)化意識(shí) 由于互為逆否的兩個(gè)命題同真假,因此,當(dāng)原命題的真假不易判斷或證明原命題較困難時(shí),可以轉(zhuǎn)化為逆否命題的真假來(lái)判斷或證明. 例1 證明:若a2-b2+2a-4b-3≠0,則a-b≠1. 證明 命題“若a2-b2+2a-4b-3≠0, 則a-b≠1”的逆否命題是“若a-b=1, 則a2-b2+2a-4b-3=0”. 由a-b=1得a2-b2+2a-4b-3=(a+b)(a-b)+2(a-b)-2b-3=a-b-1=0. ∵原命題

17、的逆否命題是真命題, ∴原命題也是真命題. 故若a2-b2+2a-4b-3≠0,則a-b≠1. 例2 已知p:x2-8x-20>0,q:x2-2x+1-a2>0,若p是q的充分不必要條件,求正實(shí)數(shù)a的取值范圍. 分析 將充分、必要條件轉(zhuǎn)化為集合之間的關(guān)系,進(jìn)而轉(zhuǎn)化為集合運(yùn)算問(wèn)題. 解 解不等式x2-8x-20>0, 得p:A={x|x>10或x<-2}; 解不等式x2-2x+1-a2>0, 得q:B={x|x>1+a或x<1-a,a>0}. 依題意p?q,但qD?/p,說(shuō)明AB. 于是有或,解得0

18、題真假的關(guān)鍵:一是識(shí)別命題的構(gòu)成形式;二是分別將各命題簡(jiǎn)化,對(duì)等價(jià)的簡(jiǎn)化命題進(jìn)行判斷. 例3 已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域?yàn)镽,命題q:函數(shù)y=-(5-2a)x是R上的減函數(shù).若p或q為真命題,p且q為假命題,則實(shí)數(shù)a的取值范圍是________. 解析 函數(shù)y=log0.5(x2+2x+a)的值域?yàn)镽,即y=x2+2x+a的值域是(0,+∞),即在方程x2+2x+a=0中, Δ=4-4a≥0?a≤1,即p真?a≤1; 函數(shù)y=-(5-2a)x是減函數(shù)?5-2a>1?a<2, 即q真?a<2. 由p或q為真命題,p且q為假命題, 知命題p,q中必有一真

19、一假.若p真q假,則無(wú)解; 若p假q真,則1

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!