《2022年高三數(shù)學(xué)一輪總復(fù)習 專題二 常用邏輯用語(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)一輪總復(fù)習 專題二 常用邏輯用語(含解析)(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022年高三數(shù)學(xué)一輪總復(fù)習 專題二 常用邏輯用語(含解析)重點 1 四種命題及其關(guān)系1.四種命題的表述2.四種命題的等價關(guān)系高考常考角度角度1已知、,命題“若=3,則”,的否命題是( A )A. 若,則 B. 若,則C. 若,則 D. 若,則解析:命題“若,則”的否命題是“若,則”,故選A.角度2 給出命題:若函數(shù)是冪函數(shù),則函數(shù)的圖象不過第四象限,在它的逆命題、否命題、逆否命題三個命題中,真命題的個數(shù)是( C )A. 3 B. 2 C. 1 D. 0解析:本題考查冪函數(shù)的圖象與性質(zhì),四種命題的等價關(guān)系 因為原命題是真命題,故它的逆否命題為真命題;逆命題為假命題,如,圖象不過第四象限,顯然不
2、是冪函數(shù),故它的否命題為假命題,故選C重點 2 充分條件與必要條件1.充分條件、必要條件的表述2.判斷方法3.證明方法高考??冀嵌冉嵌?設(shè)則“且”是“”的( )A充分而不必要條件 B必要而不充分條件 C充分必要條件 D既不充分也不必要條件解析:當且時,一定有;反過來當,不一定有且,例如也可以,故選A角度2設(shè)集合,則“”是“”的( C )A充分而不必要條件 B必要而不充分條件 C充分必要條件 D既不充分也不必要條件解析:,或,又或,即“”是“”的充分必要條件.重點 3 簡單的邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞1.含有邏輯聯(lián)結(jié)詞的命題的真假判斷:命題、的判斷方法2.“或”命題和“且”命題的否定:命題的
3、否定是,命題的否定是3.含有量詞的命題的否定:“”的否定是“” “”的否定是“”高考常考角度角度1若是真命題,是假命題,則( D )A. 是真命題 B. 是假命題 C. 是真命題 D. 是真命題解析:含有邏輯聯(lián)結(jié)詞的命題的真假判斷,選擇D。角度2命題“存在,使得”的否定是 對任意,都有 解析:主要考查存在性命題的否定形式,“存在”對應(yīng)“任意”,所以答案為:對任意,都有.誤區(qū)警示:這類問題的常見錯誤是沒有把全稱量詞改為存在量詞,或者對于“”的否定用“”了.要特別注意量詞的否定形式,如“都是”的否定是“不都是”,而不是“都不是”;”全部”的否定是“不全、不都”.突破1個高考難點難點 以否定形式給出
4、的充要條件的判斷典例 “”是“” 的( B )A充分而不必要條件 B必要而不充分條件 C充分必要條件 D既不充分也不必要條件解析:利用四種命題及其等價關(guān)系 命題:若“”,則“”等價于命題:若“”,則“”,顯然是假命題,故不充分命題:若“”,則“”等價于命題:若“”,則“”,此為真命題,故必要性成立所以選B規(guī)避3個易失分點易失分點1 四種命題的關(guān)系不明典例 有下列四個命題:命題“若,則互為倒數(shù)”的逆命題;命題“面積相等的三角形全等”的否命題;命題“若,則有實根”的逆否命題;命題“若,則”的逆否命題;其中是真命題的是_(填上你認為正確的命題的序號)解析:命題的逆命題是“若互為倒數(shù),則”,顯然為真命
5、題 命題的否命題是“面積不相等的三角形不全等”也是真命題 命題,當時, 成立,為真命題,故它的逆否命題也為真命題 命題,原命題為假命題,故它的逆否命題也為假命題易失分點2 充分必要條件顛倒典例 若關(guān)于的方程的一個根大于零,另一個根小于零,則是的( A )A充分而不必要條件 B必要而不充分條件 C充分必要條件 D既不充分也不必要條件解析:先把命題簡化, 關(guān)于的方程的一個根大于零,另一個根小于零,令則有,從而成立,不成立.易失分點3 “或”、“且”、“非”理解不準確典例 已知命題關(guān)于的方程有實根;命題函數(shù)在上是增函數(shù).若或是真命題,且是假命題,則實數(shù)的取值范圍是( C )A B C D解析:命題關(guān)于的方程有實根等價于或 命題函數(shù)在上是增函數(shù)等價于因為或是真命題,且是假命題,所以命題和一真一假當真假時,當假真時, 故選C