《2022年高中數(shù)學(xué) 第二十教時(shí) 對數(shù)的基本概念教案 新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第二十教時(shí) 對數(shù)的基本概念教案 新人教A版必修1(1頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第二十教時(shí) 對數(shù)的基本概念教案 新人教A版必修1
教材:對數(shù)的基本概念
目的:要求學(xué)生理解對數(shù)的概念,能夠進(jìn)行對數(shù)式與指數(shù)式的互化,并由此求一些特殊的對數(shù)式的值。
進(jìn)程:
一、 引入:從指數(shù)導(dǎo)入,見P80例題
假設(shè)1995年我國的國民生產(chǎn)總值為 a億元,如每年平均增長8%,那么經(jīng)過多少年國民生產(chǎn)總值是1995年的2倍?
設(shè):經(jīng)過x年國民生產(chǎn)總值是1995年的2倍
則有
這是已知底數(shù)和冪的值,求指數(shù)的問題。即指數(shù)式 中,已知a 和N求b的問題。(這里 )
二、 課題:對數(shù)
定義:一般地,如果 的b次
2、冪等于N, 就是 ,那么數(shù) b叫做 a為底 N的對數(shù),記作 ,a叫做對數(shù)的底數(shù),N叫做真數(shù)。
1.在指數(shù)式中 N > 0 (負(fù)數(shù)與零沒有對數(shù))
2.對任意 且 , 都有 ∴
同樣易知:
3.如果把 中的 b寫成 , 則有 (對數(shù)恒等式)
三、 對數(shù)式與指數(shù)式的互換,并由此求某些特殊的對數(shù)。
例如:
例一、P81 例一、例二
例二、1.計(jì)算: ,,,
解:設(shè) 則 , ∴
設(shè) 則, , ∴
令 =, ∴, ∴
令 , ∴, , ∴
2.求 x 的值:① ②
③ ④
解:①
②
③
但必須: ∴舍去
④, ∴,
3.求底數(shù):,
解:, ∴
, ∴
四、 介紹兩種特殊的對數(shù):
1.常用對數(shù):以10作底 寫成
2.自然對數(shù):以 e作底 e為無理數(shù),e = 2.71828……
寫成
五、小結(jié):1°定義 2°互換 3°求值
六、作業(yè):(練習(xí)) P81 練習(xí) P84 習(xí)題2.7 1,2
《課課練》 P79 課時(shí)練習(xí) 6—10