2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4

上傳人:xt****7 文檔編號:105267498 上傳時間:2022-06-11 格式:DOC 頁數(shù):3 大小:41.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4_第1頁
第1頁 / 共3頁
2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4_第2頁
第2頁 / 共3頁
2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4_第3頁
第3頁 / 共3頁

最后一頁預(yù)覽完了!喜歡就下載吧,查找使用更方便

9.9 積分

下載資源

資源描述:

《2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4》由會員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高中數(shù)學(xué)《兩角和與差的余弦》教案蘇教版必修4 【三維目標(biāo)】: 一、知識與技能 1.掌握用向量方法推導(dǎo)兩角差的余弦公式,進(jìn)一步體會向量方法的作用; 2.用余弦的差角公式推出余弦的和角公式,理解化歸思想在三角變換中的作用; 3.能用余弦的和差角公式進(jìn)行簡單的三角函數(shù)式的化簡、求值及恒等式的證明 二、過程與方法 1.經(jīng)歷用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,體驗和感受數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的過程,體會向量和三角函數(shù)的聯(lián)系; 2.通過向量的手段證明兩角差的余弦公式,讓學(xué)生進(jìn)一步體會向量法作為一種有效手段的同時掌握兩角差的余弦函數(shù);講解例題,總結(jié)方法,鞏固練習(xí). 三、情感、態(tài)

2、度與價值觀 1.創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識. 2.通過本節(jié)的學(xué)習(xí),使同學(xué)們對兩角和與差的三角函數(shù)有了一個全新的認(rèn)識;理解掌握兩角和與差的三角的各種變形,提高逆用思維的能力. 【教學(xué)重點與難點】: 重點: 兩角和與差的余弦公式的推導(dǎo)及其應(yīng)用. 難點: 兩角差的余弦公式的推導(dǎo). 【學(xué)法與教學(xué)用具】: 1. 學(xué)法: (1)自主性學(xué)習(xí)法:通過自學(xué)掌握兩角差的余弦公式. (2)探究式學(xué)習(xí)法:通過分析、探索、掌握兩角差的余弦公式的過程. (3)反饋練習(xí)法:以練習(xí)來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距. 2. 教法:啟發(fā)式教學(xué) 3

3、.教學(xué)用具:多媒體、實物投影儀. 【授課類型】:新授課 【課時安排】:1課時 【教學(xué)思路】: 一、創(chuàng)設(shè)情景,揭示課題 1.?dāng)?shù)軸兩點間的距離公式:. 2.點是終邊與單位圓的交點,則. 二、研探新知 兩角和的余弦公式的推導(dǎo)(向量法): 把看成兩個向量夾角的余弦,考慮用向量的數(shù)量積來研究。 在直角坐標(biāo)系中,以軸為始邊分別作角,其終邊分別與單位圓交于,,則由于余弦函數(shù)是周期為的偶函數(shù),所以,我們只需考慮的情況。 設(shè)向量=,=, 則 =||||= 另一方面,由向量數(shù)量積的坐標(biāo)表示,有=,所以 = 這就是兩

4、角差的余弦公式。 【探究】: 如圖3-1-2,在直角坐標(biāo)系中,單位圓與軸交于,以為始邊分別作出角,其終邊分別和單位圓交于,由,你能否導(dǎo)出兩角差的余弦公式? 在公式中用代替,就得到.() 這就是兩角和的余弦公式 【說明】: 公式對于任意的都成立。 【思考】: “用代替”的換元方法體現(xiàn)在圖形上具有什么幾何意義?你能直接利用向量的數(shù)量積推出兩角和的余弦公式嗎? 三、質(zhì)疑答辯,排難解惑,發(fā)展思維 例1(教材例1)利用兩角和(差)的余弦公式證明下列誘導(dǎo)公式: (1); (2) 例2(教材例2)利用兩角和(差)的余弦公式,求。 【舉一反三】: 1. 求值:(1) (2

5、) (1) (2). 【點評】:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用. 【思考】:你會求① cos105°、②sin、③cos、④coscos-sinsin的值嗎? 例3(教材例3)已知,求的值 【思考】:在上例中,你能求出的值嗎? 【舉一反三】: 1.已知cos , ,求cos的值. 2.已知,是第三象限角,求的值. 提示:注意角、的象限,也就是符號問題. 3. 已知cos(2α-β)=-,sin (α-2β)=,且<α<,0<β<,求cos(α+β)的值 四、鞏固深化,反饋矯正 教材練習(xí)第2題,第3題 五、歸納整理,整體認(rèn)識 本節(jié)我們學(xué)習(xí)了兩角和與差的余弦公式,要求同學(xué)們掌握公式的推導(dǎo),能熟練運用公式,注意公式的逆用。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用. 六、承上啟下,留下懸念 1.用兩點距離公式推導(dǎo)兩角和與差的余弦公式。 2.預(yù)習(xí)兩角和與差的正弦 七、板書設(shè)計(略) 八、課后記: gkxx

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!