《2022年高中物理 第四章4.3牛頓第二定律教學(xué)案 新人教版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中物理 第四章4.3牛頓第二定律教學(xué)案 新人教版必修1(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中物理 第四章4.3牛頓第二定律教學(xué)案 新人教版必修1班級(jí)_姓名_學(xué)號(hào)_學(xué)習(xí)目標(biāo): 1.知道國(guó)際單位制中力的單位是怎樣定義的。2.理解牛頓第二定律的內(nèi)容,知道牛頓第二定律表達(dá)式的確切含義。3.能初步應(yīng)用牛頓第二定律解決一些簡(jiǎn)單問(wèn)題。學(xué)習(xí)重點(diǎn): 牛頓第二定律學(xué)習(xí)難點(diǎn): 牛頓第二定律 主要內(nèi)容:一、牛頓第二定律1 公式推導(dǎo):2 語(yǔ)言表述:3公式表達(dá):數(shù)學(xué)表達(dá)式:常用計(jì)算式:F合=ma4牛頓第二定律是牛頓運(yùn)動(dòng)定律的核心,是本章的重點(diǎn)和中心內(nèi)容,在力學(xué)中占有很重要的地位,一定要深入理解牛頓第二定律的確切含義和重要意義。理解:(1) 因果關(guān)系:只要物體所受合力不為零(無(wú)論合力多么的小),物體
2、就獲得加速度,即力是產(chǎn)生加速度的原因,力決定加速度,力與速度、速度的變化沒(méi)有直接關(guān)系。如果物體只受重力G=mg的作用,則由牛頓第二定律知物體的加速度為a=。即重力是使物體產(chǎn)生重力加速度g的原因,各地的g值略有差異,通常取g=98ms2。在第一章學(xué)習(xí)重力一節(jié)時(shí),給出了重量和質(zhì)量的關(guān)系式G=mg,g是以比例常數(shù)引人的,g=98Nkg?,F(xiàn)在可以證明,這個(gè)比例常數(shù)就是重力加速度,98Nkg與98ms2等價(jià)。 (2)矢量關(guān)系:F合=ma是一個(gè)矢量式,加速度a與合外力F合都是矢量,物體加速度的方向由它所受的合外力的方向決定且總與合外力的方向相同(同向性),而物體的速度方向與合外力方向之間并無(wú)這種關(guān)系。這樣
3、知道了合外力(或加速度)的方向,就知道了加速度(或合外力)的方向。(3)瞬時(shí)對(duì)應(yīng)關(guān)系:牛頓第二定律表示的是力的瞬時(shí)作用規(guī)律,物體在某一時(shí)刻加速度的大小和方向,是由該物體在這一時(shí)刻所受到的合外力的大小和方向來(lái)決定的。當(dāng)物體所受到的合外力發(fā)生變化時(shí),它的加速度隨即也要發(fā)生變化,F(xiàn)合=ma對(duì)運(yùn)動(dòng)過(guò)程的每一瞬間成立,加速度與力是同一時(shí)刻的對(duì)應(yīng)量,即同時(shí)產(chǎn)生(雖有因果關(guān)系但卻不分先后)、同時(shí)變化、同時(shí)消失。(4) 獨(dú)立對(duì)應(yīng)關(guān)系:當(dāng)物體受到幾個(gè)力的作用時(shí),各力將獨(dú)立地產(chǎn)生與其對(duì)應(yīng)的加速度(力的獨(dú)立作用原理),而物體表現(xiàn)出來(lái)的實(shí)際加速度是物體所受各力產(chǎn)生的加速度疊加(按矢量運(yùn)算法則)的結(jié)果。(5) 同體關(guān)系
4、:加速度和合外力(還有質(zhì)量)是同屬一個(gè)物體的,所以解題時(shí)一定把研究對(duì)象確定好,把研究對(duì)象全過(guò)程的受力情況都搞清楚。二、由牛頓第二定律可以清楚地認(rèn)識(shí)到運(yùn)動(dòng)和力的關(guān)系1 物體運(yùn)動(dòng)的性質(zhì)由所受合力F合的情況決定。2 物體運(yùn)動(dòng)的軌跡由所受合力F合和它的初速度v0共同決定。3 物體做加速直線運(yùn)動(dòng)的條件:F合和v0的方向沿同一直線且同向。三、應(yīng)用牛頓第二定律解題的一般步驟: (1)確定研究對(duì)象(在有多個(gè)物體存在的復(fù)雜問(wèn)題中,確定研究對(duì)象尤其顯得重要)。 (2)分析研究對(duì)象的受力情況,畫(huà)出受力圖。 (3)選定正方向或建立直角坐標(biāo)系。通常選加速度的方向?yàn)檎较?,或?qū)⒓铀俣鹊姆较蜃鳛槟骋蛔鴺?biāo)軸的正方向。這樣與正
5、方向相同的力(或速度)取正值;與正方向相反的力(或速度)取負(fù)值。 (4)求合力(可用作圖法,計(jì)算法或正交分解法)。 (5)根據(jù)牛頓第二定律列方程。 (6)必要時(shí)進(jìn)行檢驗(yàn)或討論。圖3-2-1m 【例1】如圖3-2-1所示,小車在水平面上做勻變速運(yùn)動(dòng),在小車中懸線上掛一個(gè)小球,發(fā)現(xiàn)小球相對(duì)小車靜止但懸線不在豎直方向上,則當(dāng)懸線保持與豎直方向的夾角為時(shí),小車的加速度是多少?試討論小車的可能運(yùn)動(dòng)情況.Fmamg圖3-2-2【解析】小車在水平方向上運(yùn)動(dòng),即小車的加速度沿水平方向,小球與小車相對(duì)靜止,則小球與小車有相同加速度,所以小球受到的合外力一定沿水平方向,對(duì)小球進(jìn)行受力分析如圖3-2-2所示,小球所
6、受合外力水平向左,則小球和小車的加速度水平向左,加速度的大小為a,由牛頓第二定律得F=mgtan=ma,得a=gtan.小車可以向左加速;也可以向右減速運(yùn)動(dòng).【答案】gtan;向左加速或向右減速;【點(diǎn)撥】用牛頓第二定律解力和運(yùn)動(dòng)的關(guān)系的問(wèn)題,關(guān)鍵是求出物體受到的合外力,當(dāng)物體受兩個(gè)力產(chǎn)生加速度時(shí),一般用平行四邊形定則求合外力比較直接簡(jiǎn)單,注意合外力的方向就是加速度的方向.圖3-2-3l 拓展如圖3-2-3所示,質(zhì)量為m2的物體2放在正沿平直軌道向右行駛的車廂底板上,并用豎直細(xì)繩通過(guò)光滑定滑輪連接質(zhì)量為ml的物體,與物體l相連接的繩與豎直方向成角,則 ( )A車廂的加速度為gsin B繩對(duì)物體1
7、的拉力為m1g/cosC底板對(duì)物體2的支持力為(m2一m1)g D物體2所受底板的摩擦力為m2 g tan【解析】小車在水平方向向右運(yùn)動(dòng),由圖可知小車的加速度沿水平向右,物體1與小車有相同加速度,根據(jù)【例1】對(duì)物體1進(jìn)行受力分析,由牛頓第二定律得F=mgtan=ma,得a=gtan,故A選項(xiàng)錯(cuò)誤;且由圖3-2-2可知繩對(duì)物體1的拉力為m1g/cos,底板對(duì)物體2的支持力為(m2g一m1g/cos),故C錯(cuò)、B正確;物體2與小車也有相同加速度,由牛頓第二定律得,物體2所受底板的摩擦力為f=m2a=m2 g tan,即D選項(xiàng)正確.【答案】BD【例2】如圖3-2-6所示, 質(zhì)量為m的人站在自動(dòng)扶梯的
8、水平踏板上, 人的鞋底與踏板的動(dòng)摩擦因數(shù)為, 扶梯傾角為, 若人隨扶梯一起以加速度a向上運(yùn)動(dòng),梯對(duì)人的支持力FN和摩擦力f分別為 ( )A. FN=masin B. FN=m(g+asin)C. f=mg D. f=macos【解析】物體受到重力mg、支持力FN、靜摩擦力f三個(gè)力作用,這三個(gè)力都在水平方向和豎直方向,如果要分解這三個(gè)力比較麻煩,根據(jù)力的獨(dú)立作用原理,將加速度沿著兩個(gè)方向分解,再在這兩個(gè)方向用牛頓第二定律列方程比較簡(jiǎn)單,在水平方向有:Fx=max, 即f=macos,故C錯(cuò)D選項(xiàng)正確;在豎直方向有:Fy=may, 即FN-mg=masin,故A錯(cuò)B對(duì).【答案】BD課堂訓(xùn)練:圖3-
9、2-8 1. 慣性制導(dǎo)系統(tǒng)已廣泛應(yīng)用于彈道式導(dǎo)彈工程中,這個(gè)系統(tǒng)的重要元件之一是加速度計(jì)加速度計(jì)的構(gòu)造原理的示意圖如圖3-2-8所示沿導(dǎo)彈飛行方向安裝的固定光滑桿上套一質(zhì)量為m的滑塊,滑塊兩側(cè)分別與勁度系數(shù)均為k的彈簧相連,兩彈簧的另一端與固定壁相連滑塊原來(lái)靜止,且彈簧處于自然長(zhǎng)度滑塊上有指針,可通過(guò)標(biāo)尺測(cè)出滑塊的位移,然后通過(guò)控制系統(tǒng)進(jìn)行制導(dǎo)設(shè)某段時(shí)間內(nèi)導(dǎo)彈沿水平方向運(yùn)動(dòng),指針向左偏離O點(diǎn)的距離為x,則這段時(shí)間內(nèi)導(dǎo)彈的加速度 ( )A方向向左,大小為kxm B方向向右,大小為kxmC方向向左,大小為2kxm D方向向右,大小為2kxm【解析】指針向左偏離O點(diǎn)的距離為x,則左邊彈簧被壓縮x,右
10、邊彈簧被拉長(zhǎng)x,即兩彈簧所受彈力都為kx,方向都向右,由牛頓第二定律得出導(dǎo)彈的加速度大小為大小為2kxm方向向右,故D選項(xiàng)正確.【答案】D2如圖3-2-9所示,小車上固定一彎折硬桿ABC,C端固定一質(zhì)量為m的小球,已知角恒定,當(dāng)小車水平向左做變加速直線運(yùn)動(dòng)時(shí),BC桿對(duì)小球的作用力方向 ( )圖3-2-9ABCA一定沿桿斜向上 B一定豎直向上C可能水平向左D隨加速度大小的改變而改變【解析】由于小球與車為連接體,小球所受合力由重力與桿的作用力構(gòu)成,應(yīng)是水平方向,加速度不同,合外力值也不同,故BC桿的作用力應(yīng)隨加速度的值而變;選D.【答案】D課后作業(yè):1. 在牛頓第二定律的數(shù)學(xué)表達(dá)式Fkmg中,有關(guān)
11、比例系數(shù)k的說(shuō)法正確的是 (D)A在任何情況下k都等于1B因?yàn)閗,所以k可有可無(wú)Ck的數(shù)值由質(zhì)量、加速度和力的大小決定Dk的數(shù)值由質(zhì)量、加速度和力的單位決定2由牛頓第二定律的數(shù)學(xué)表達(dá)式可推出m=,則物體質(zhì)量 (CD)A在加速度一定時(shí),與合外力成正比B在合外力一定時(shí),與加速度成反比圖3-2-10C在數(shù)值上等于它所受到的合外力跟它獲得的加速度的比值D與合外力及加速度無(wú)關(guān)3如圖3-2-10所示,一小車放在水平地面上,小車的底板上放一光滑小球,小球通過(guò)兩根輕彈簧與小車兩壁相連,當(dāng)小車勻速運(yùn)動(dòng)時(shí)兩彈簧L1、L2恰處于自然狀態(tài)當(dāng)發(fā)現(xiàn)L1變長(zhǎng)L2變短時(shí)以下判斷正確的是 (BC) A小車可能向右做勻加速運(yùn)動(dòng)
12、B小車可能向右做勻減速運(yùn)動(dòng)C小車可能向左做勻加速運(yùn)動(dòng)D小車可能向左做勻減速運(yùn)動(dòng)圖3-2-11F4如圖3-2-11所示,質(zhì)量為m的木塊在推力F作用下,沿豎直墻壁勻加速向上運(yùn)動(dòng),F(xiàn)與豎直方向的夾角為已知木塊與墻壁間的動(dòng)摩擦因數(shù)為,則木塊受到的滑動(dòng)摩擦力大小是 ( D )Amg BFcos -mgCFcos+mg DFsin圖3-2-125如圖3-2-12所示,輕彈簧下端固定在水平面上.一個(gè)小球從彈簧正上方某一高度處由靜止開(kāi)始自由下落,接觸彈簧后把彈簧壓縮到一定程度后停止下落.在小球下落的這一全過(guò)程中,下列說(shuō)法中正確的是 (CD)A小球剛接觸彈簧瞬間速度最大B從小球接觸彈簧起加速度變?yōu)樨Q直向上C從小
13、球接觸彈簧到到達(dá)最低點(diǎn),小球的速度先增大后減小D從小球接觸彈簧到到達(dá)最低點(diǎn),小球的加速度先減小后增大【解析】小球的加速度大小決定于小球受到的合外力.從接觸彈簧到達(dá)到最低點(diǎn),彈力從零開(kāi)始逐漸增大,所以合力先減小后增大.因此加速度先減小后增大,當(dāng)合力與速度同向時(shí)小球速度增大,所以當(dāng)小球受到的彈力和重力大小相等時(shí)速度最大.【答案】CD閱讀材料:慣性系和非慣性系 牛頓定律只能直接地應(yīng)用于“慣性系”;對(duì)于“非慣性系”,則需要引入一個(gè)虛擬的“慣性力”,才能應(yīng)用牛頓定律。 在本章的習(xí)題里,遇到了變速升降的問(wèn)題。如果某一物體所受的重力為G,那么當(dāng)起重機(jī)勻加速上升(或勻減速下降)時(shí),鋼絲繩的拉力7G;當(dāng)起重機(jī)勻
14、加速下降(或勻減速上升)時(shí),鋼絲繩的拉力TG。 勻加速下降時(shí):G-T=ma,所以TG。 但是以做變速運(yùn)動(dòng)的起重機(jī)做參考系的觀察者,則感到似乎物體所受的重力發(fā)生了變化。這就是通常說(shuō)的“超重”和“失重”現(xiàn)象。 由上邊的例子可以看出:從不同的參考系進(jìn)行觀察,對(duì)同一事件可以得出不同的認(rèn)識(shí)。當(dāng)我們以地面為參考系時(shí),可以運(yùn)用牛頓定律來(lái)考慮問(wèn)題,我們稱這種“牛頓定律能夠適用的參考系”為慣性系。當(dāng)我們以做變速運(yùn)動(dòng)的起重機(jī)為參考系時(shí),則不能直接應(yīng)用牛頓定律來(lái)處理問(wèn)題,我們稱這種系統(tǒng)為“非慣性系”。 非慣性系不僅限于變速升降系統(tǒng),我們?cè)倥e兩個(gè)常見(jiàn)的例子:在加速前進(jìn)的車廂中的觀察者,看到一個(gè)光滑小球會(huì)自動(dòng)地加速后退
15、,而沒(méi)有發(fā)現(xiàn)它受到產(chǎn)生加速度的力。在轉(zhuǎn)動(dòng)圓盤(pán)上的觀察者,看到光滑小球會(huì)自動(dòng)離心而去,并沒(méi)有發(fā)現(xiàn)使它遠(yuǎn)離圓心的力。 人們?yōu)榱耸古nD定律也能應(yīng)用于非慣性系而引入了“慣性力”的概念。這不是由于物質(zhì)間的相互作用而產(chǎn)生的力,而是為了描寫(xiě)非慣性系的變速運(yùn)動(dòng)的性質(zhì)而引入的假想的力。例如前進(jìn)中的車輛驟然停止時(shí),在慣性系中的觀察者看來(lái),車廂中的乘客沒(méi)有受到外力,仍然向前做慣性運(yùn)動(dòng),但車內(nèi)乘客卻覺(jué)得自己好像受到一個(gè)力,使自己向前倒去,這個(gè)力就是慣性力。 為了與“慣性力”相區(qū)別,我們把物體間相互作用的力稱為“牛頓力”。在非慣性系中運(yùn)用牛頓第二定律處理問(wèn)題時(shí),不但要考慮牛頓力”,而且還要考慮“慣性力”。 中學(xué)物理教材中的力學(xué)問(wèn)題,都是用慣性系來(lái)討論的,所以沒(méi)有引入慣性系和非慣性系的概念。