(通用版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題六 函數(shù)、不等式、導(dǎo)數(shù)教學(xué)案 理
《(通用版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題六 函數(shù)、不等式、導(dǎo)數(shù)教學(xué)案 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《(通用版)2018年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專(zhuān)題六 函數(shù)、不等式、導(dǎo)數(shù)教學(xué)案 理(101頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 專(zhuān)題六 函數(shù)、不等式、導(dǎo)數(shù) [研高考·明考點(diǎn)] 年份 卷別 小題考查 大題考查 2017 卷Ⅰ T5·函數(shù)的單調(diào)性、奇偶性 T21·利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)問(wèn)題 T11·指數(shù)與對(duì)數(shù)互化、對(duì)數(shù)運(yùn)算、比較大小 T14·線性規(guī)劃求最值 卷Ⅱ T5·線性規(guī)劃求最值 T21·利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,函數(shù)的零點(diǎn),證明不等式 T11·導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、求極值 卷Ⅲ T11·函數(shù)的零點(diǎn)問(wèn)題 T21·導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的應(yīng)用,不等式的放縮 T13·線性規(guī)劃求最值 T15·分段函數(shù)與不等式的解法 2016 卷Ⅰ T7·函
2、數(shù)圖象的識(shí)別 T21·利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),證明不等式 T8·基本初等函數(shù)的單調(diào)性、比較大小 T16·線性規(guī)劃求最值問(wèn)題的實(shí)際應(yīng)用 卷Ⅱ T12·函數(shù)圖象對(duì)稱(chēng)性的應(yīng)用 T21·利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,證明不等式,求函數(shù)的最值 T16·導(dǎo)數(shù)的幾何意義、求兩函數(shù)的公共切線 卷Ⅲ T6·指數(shù)函數(shù)與冪函數(shù)值的大小比較 T21·導(dǎo)數(shù)在研究函數(shù)極值、最值中的應(yīng)用,放縮法證明不等式 T13·線性規(guī)劃求最值 T15·偶函數(shù)的性質(zhì)、導(dǎo)數(shù)的幾何意義 2015 卷Ⅰ T12·函數(shù)的概念與不等式的解法 T21·導(dǎo)數(shù)的幾何意義,函數(shù)的最值、零點(diǎn)問(wèn)題 T13·偶函數(shù)的定義 T15·
3、線性規(guī)劃求最值 卷Ⅱ T5·對(duì)數(shù)運(yùn)算、分段函數(shù)求值 T21·利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,已知不等式恒成立求參數(shù)的取值范圍 T10·函數(shù)圖象的判斷 T12·導(dǎo)數(shù)與抽象函數(shù)的單調(diào)性、奇偶性 T14·線性規(guī)劃求最值 [析考情·明重點(diǎn)] 小題考情分析 大題考情分析 ??键c(diǎn) 1.函數(shù)圖象與性質(zhì)及其應(yīng)用(3年7考) 2.線性規(guī)劃問(wèn)題(3年7考) 3.函數(shù)與不等式問(wèn)題(3年4考) 常考點(diǎn) 高考對(duì)此部分在解答題中的考查以導(dǎo)數(shù)的應(yīng)用為主,主要考查導(dǎo)數(shù)、含參不等式、方程、探索性問(wèn)題等方面的綜合應(yīng)用,難度較大,題型主要有: 1.導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用問(wèn)題 2.導(dǎo)數(shù)與函數(shù)零點(diǎn)或方程根的問(wèn)題
4、 3.導(dǎo)數(shù)與不等式恒成立、存在性問(wèn)題 4.導(dǎo)數(shù)與不等式的證明問(wèn)題 偶考點(diǎn) 1.函數(shù)與方程 2.不等式的性質(zhì) 3.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值最值問(wèn)題 4.導(dǎo)數(shù)的幾何意義 偶考點(diǎn) 導(dǎo)數(shù)與函數(shù)、不等式的其他綜合問(wèn)題 第一講 小題考法——函數(shù)的圖象與性質(zhì) 考點(diǎn)(一) 主要考查函數(shù)的定義域、分段函數(shù)求值或已知函數(shù)值(取值范圍)求字母的值(取值范圍)等. 函數(shù)的概念及表示 [典例感悟] [典例] (1)(2015·全國(guó)卷Ⅱ)設(shè)函數(shù)f(x)=則f(-2)+f(log212)=( ) A.3 B.6 C.9 D.12 (2)(2017·全國(guó)卷Ⅲ)
5、設(shè)函數(shù)f(x)=則滿足f(x)+f>1的x的取值范圍是________.
[解析] (1)∵-2<1,
∴f(-2)=1+log2(2+2)=1+log24=1+2=3.
∵log212>1,∴f(log212)=2log212-1==6.
∴f(-2)+f(log212)=3+6=9.故選C.
(2)由題意知,當(dāng)x≤0時(shí),原不等式可化為x+1+x+>1,解得x>-,
∴-
6、定義域的求法 求函數(shù)的定義域,其實(shí)質(zhì)就是以函數(shù)解析式所含運(yùn)算有意義為準(zhǔn)則,列出不等式或不等式組,然后求出解集即可. 2.分段函數(shù)問(wèn)題的5種常見(jiàn)類(lèi)型及解題策略 常見(jiàn)類(lèi)型 解題策略 求函數(shù)值 弄清自變量所在區(qū)間,然后代入對(duì)應(yīng)的解析式,求“層層套”的函數(shù)值,要從最內(nèi)層逐層往外計(jì)算 求函數(shù)最值 分別求出每個(gè)區(qū)間上的最值,然后比較大小 解不等式 根據(jù)分段函數(shù)中自變量取值范圍的界定,代入相應(yīng)的解析式求解,但要注意取值范圍的大前提 求參數(shù) “分段處理”,采用代入法列出各區(qū)間上的方程 利用函數(shù) 性質(zhì)求值 必須依據(jù)條件找到函數(shù)滿足的性質(zhì),利用該性質(zhì)求解 [演練沖關(guān)] 1.(
7、2018屆高三·浙江名校聯(lián)考)已知函數(shù)f(x)=則f(-2 017)=( ) A.1 B.e C. D.e2 解析:選B 由已知可得,當(dāng)x>2時(shí),f(x)=f(x-4),故f(x)在x>-2時(shí)的周期為4,則f(-2 017)=f(2 017)=f(2 016+1)=f(1)=e. 2.(2017·山東高考)設(shè)f(x)=若f(a)=f(a+1),則f=( ) A.2 B.4 C.6 D.8 解析:選C 當(dāng)0<a<1時(shí),a+1≥1,f(a)=,f(a+1)=2(a+1-1)=2a,∵f(a)=f(a+1),∴=2a, 解得a=或a=0(舍去). ∴f=
8、f(4)=2×(4-1)=6. 當(dāng)a≥1時(shí),a+1≥2, ∴f(a)=2(a-1),f(a+1)=2(a+1-1)=2a, ∴2(a-1)=2a,無(wú)解. 綜上,f=6. 3.已知函數(shù)f(x)=則f(f(x))<2的解集為( ) A.(1-ln 2,+∞) B.(-∞,1-ln 2) C.(1-ln 2,1) D.(1,1+ln 2) 解析:選B 因?yàn)楫?dāng)x≥1時(shí),f(x)=x3+x≥2,當(dāng)x<1時(shí),f(x)=2ex-1<2,所以f(f(x))<2等價(jià)于f(x)<1,即2ex-1<1,解得x<1-ln 2,所以f(f(x))<2的解集為(-∞,1-ln 2),故選B.
9、 考點(diǎn)(二) 主要考查根據(jù)函數(shù)的解析式選擇圖象或利用函數(shù)的圖象選擇解析式、利用函數(shù)的圖象研究函數(shù)的性質(zhì)、方程的解以及解不等式、比較大小等問(wèn)題. 函數(shù)的圖象及應(yīng)用 [典例感悟] [典例] (1)(2017·全國(guó)卷Ⅰ)函數(shù)y=的部分圖象大致為( ) (2)(2015·全國(guó)卷Ⅱ)如圖,長(zhǎng)方形ABCD的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動(dòng),記∠BOP=x.將動(dòng)點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則y=f(x)的圖象大致為( ) [解析] (1)令函數(shù)f(x)=,其定義域?yàn)閧x|x≠2kπ,k∈Z},又f(-x)===-f(x),
10、所以f(x)=為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱(chēng),故排除B;因?yàn)閒(1)=>0,f(π)==0,故排除A、D,選C.
(2)當(dāng)x∈時(shí),f(x)=tan x+,圖象不會(huì)是直線段,從而排除A、C.
當(dāng)x∈時(shí),f=f=1+,f=2.
∵2<1+,
∴f 11、奇函數(shù),排除B、C.若函數(shù)為f(x)=x-,則當(dāng)x→+∞時(shí),f(x)→+∞,排除D,故選A.
2.(2017·全國(guó)卷Ⅲ)函數(shù)y=1+x+的部分圖象大致為( )
解析:選D 法一:易知函數(shù)g(x)=x+是奇函數(shù),其函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以函數(shù)y=1+x+的圖象只需把g(x)的圖象向上平移一個(gè)單位長(zhǎng)度,結(jié)合選項(xiàng)知選D.
法二:當(dāng)x→+∞時(shí),→0,1+x→+∞,y=1+x+→+∞,故排除選項(xiàng)B.當(dāng)0<x<時(shí),y=1+x+>0,故排除選項(xiàng)A、C.故選D.
3.如圖,已知l1⊥l2,圓心在l1上、半徑為1 m 的圓O在t=0時(shí)與l2相切于點(diǎn)A,圓O沿l1以1 m/s的速度勻速向上移動(dòng),圓 12、被直線l2所截上方圓弧長(zhǎng)記為x,令y=cos x,則y與時(shí)間t(0≤t≤1,單位:s)的函數(shù)y=f(t)的圖象大致為( )
解析:選B 如圖,設(shè)∠MON=α,由弧長(zhǎng)公式知x=α.
在Rt△AOM中,|AO|=1-t,cos==1-t,
∴y=cos x=2cos2-1=2(1-t)2-1.又0≤t≤1,故選B.
考點(diǎn)(三)
主要考查函數(shù)的單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性以及函數(shù)值的取值范圍、比較大小等.
函數(shù)的性質(zhì)及應(yīng)用
[典例感悟]
[典例] (1)(2016·全國(guó)卷Ⅱ)已知函數(shù)f(x)(x∈R)滿足f(-x)=2-f(x),若函數(shù)y=與y=f(x)圖象的交點(diǎn)為(x1 13、,y1),(x2,y2),…,(xm,ym),則(xi+yi)=( )
A.0 B.m
C.2m D.4m
(2)(2017·成都模擬)已知定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),且當(dāng)x∈時(shí),f(x)=-x3,則f=( )
A.- B.
C.- D.
(3)(2017·四川模擬)已知定義在R上的函數(shù)f(x)滿足下列三個(gè)條件:
①對(duì)任意的x∈R都有f(x+2)=-f(x);
②對(duì)任意的0≤x1 14、<”連接)
[解析] (1)因?yàn)閒(-x)=2-f(x),所以f(-x)+f(x)=2.因?yàn)椋?,=1,所以函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,1)對(duì)稱(chēng).函數(shù)y==1+,故其圖象也關(guān)于點(diǎn)(0,1)對(duì)稱(chēng).所以函數(shù)y=與y=f(x)圖象的交點(diǎn)(x1,y1),(x2,y2),…,(xm,ym)成對(duì)出現(xiàn),且每一對(duì)均關(guān)于點(diǎn)(0,1)對(duì)稱(chēng),所以i=0,i=2×=m,所以(xi+yi)=m.
(2)由f(x+3)=f(x)知函數(shù)f(x)的周期為3,又函數(shù)f(x)為奇函數(shù),所以f=f=-f=3=.
(3)由①可知,f(x)是一個(gè)周期為4的函數(shù);由②可知,f(x)在[0,2]上是增函數(shù);由③可知,f(x)的 15、圖象關(guān)于直線x=2對(duì)稱(chēng).故f(4.5)=f(0.5),f(6.5)=f(2.5)=f(1.5),f(7)=f(3)=f(1),f(0.5) 16、性:利用周期性可以轉(zhuǎn)化函數(shù)的解析式、圖象和性質(zhì),把不在已知區(qū)間上的問(wèn)題,轉(zhuǎn)化到已知區(qū)間上求解.
[演練沖關(guān)]
1.(2018屆高三·湖北七市(州)聯(lián)考)函數(shù)y=f(x)為R上的偶函數(shù),函數(shù)y=g(x)為 R上的奇函數(shù),f(x)=g(x+2),f(0)=-4,則g(x)可以是( )
A.4tan B.-4sin
C.4sin D.-4sin
解析:選D ∵f(x)=g(x+2),f(0)=-4,∴g(2)=-4.而4tan=4tan=4,-4sin=-4sin π=0,4sin=4sin=4,-4sin=-4,∴y=g(x)可以是g(x)=-4sin,經(jīng)檢驗(yàn),選項(xiàng)D符合題干條 17、件.故選D.
2.(2017·全國(guó)卷Ⅰ)函數(shù)f(x)在(-∞,+∞)單調(diào)遞減,且為奇函數(shù).若f(1)=-1,則滿足-1≤f(x-2)≤1的x的取值范圍是( )
A.[-2,2] B.[-1,1]
C.[0,4] D.[1,3]
解析:選D ∵f(x)為奇函數(shù),∴f(-x)=-f(x).
∵f(1)=-1,∴f(-1)=-f(1)=1.
故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).
又f(x)在(-∞,+∞)單調(diào)遞減,∴-1≤x-2≤1,
∴1≤x≤3.
3.定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(-x),當(dāng)x∈(0,1)時(shí),f(x)=則 18、f(x)在區(qū)間內(nèi)是( )
A.增函數(shù)且f(x)>0 B.增函數(shù)且f(x)<0
C.減函數(shù)且f(x)>0 D.減函數(shù)且f(x)<0
解析:選D 由f(x)為奇函數(shù),f(x+1)=f(-x)得,f(x)=-f(x+1)=f(x+2),∴f(x)是周期為2的周期函數(shù).根據(jù)條件,當(dāng)x∈,1時(shí),f(x)=log,x-2∈,-(x-2)∈,∴f(x)=f(x-2)=-f(2-x)=log.設(shè)2-x=t,則t∈,x=2-t,∴-f(t)=log-t,∴f(t)=-log,∴f(x)=-log,x∈,可以看出當(dāng)x增大時(shí),-x減小,log增大,f(x)減小,∴在區(qū)間內(nèi),f(x)是減函數(shù).而由1< 19、x<得0<-x<.∴l(xiāng)og>1,∴f(x)<0.故選D.
[必備知能·自主補(bǔ)缺]
(一) 主干知識(shí)要記牢
函數(shù)的奇偶性、周期性
(1)奇偶性是函數(shù)在其定義域上的整體性質(zhì),對(duì)于定義域內(nèi)的任意x(定義域關(guān)于原點(diǎn)對(duì)稱(chēng)),都有f(-x)=-f(x)成立,則f(x)為奇函數(shù)(都有f(-x)=f(x)成立,則f(x)為偶函數(shù)).
(2)周期性是函數(shù)在其定義域上的整體性質(zhì),一般地,對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)的任意一個(gè)x的值:若f(x+T)=f(x)(T≠0),則f(x)是周期函數(shù),T是 20、它的一個(gè)周期.
(二) 二級(jí)結(jié)論要用好
1.函數(shù)單調(diào)性和奇偶性的重要結(jié)論
(1)當(dāng)f(x),g(x)同為增(減)函數(shù)時(shí),f(x)+g(x)為增(減)函數(shù).
(2)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)區(qū)間上有相同的單調(diào)性,偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)區(qū)間上有相反的單調(diào)性.
(3)f(x)為奇函數(shù)?f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
f(x)為偶函數(shù)?f(x)的圖象關(guān)于y軸對(duì)稱(chēng).
(4)偶函數(shù)的和、差、積、商是偶函數(shù),奇函數(shù)的和、差是奇函數(shù),積、商是偶函數(shù),奇函數(shù)與偶函數(shù)的積、商是奇函數(shù).
(5)定義在(-∞,+∞)上的奇函數(shù)的圖象必過(guò)原點(diǎn),即有f(0)=0.存在既是奇函數(shù),又是偶函數(shù)的函數(shù):f(x 21、)=0.
(6)f(x)+f(-x)=0?f(x)為奇函數(shù);
f(x)-f(-x)=0?f(x)為偶函數(shù).
2.抽象函數(shù)的周期性與對(duì)稱(chēng)性的結(jié)論
(1)函數(shù)的周期性
①若函數(shù)f(x)滿足f(x+a)=f(x-a),則f(x)是周期函數(shù),T=2a.
②若函數(shù)f(x)滿足f(x+a)=-f(x),則f(x)是周期函數(shù),T=2a.
③若函數(shù)f(x)滿足f(x+a)=,則f(x)是周期函數(shù),T=2a.
(2)函數(shù)圖象的對(duì)稱(chēng)性
①若函數(shù)y=f(x)滿足f(a+x)=f(a-x),即f(x)=f(2a-x),則f(x)的圖象關(guān)于直線x=a對(duì)稱(chēng).
②若函數(shù)y=f(x)滿足f(a+x)=-f 22、(a-x),即f(x)=-f(2a-x),則f(x)的圖象關(guān)于點(diǎn)(a,0)對(duì)稱(chēng).
③若函數(shù)y=f(x)滿足f(a+x)=f(b-x),則函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱(chēng).
3.函數(shù)圖象平移變換的相關(guān)結(jié)論
(1)把y=f(x)的圖象沿x軸左右平移|c|個(gè)單位(c>0時(shí)向左移,c<0時(shí)向右移)得到函數(shù)y=f(x+c)的圖象(c為常數(shù)).
(2)把y=f(x)的圖象沿y軸上下平移|b|個(gè)單位(b>0時(shí)向上移,b<0時(shí)向下移)得到函數(shù)y=f(x)+b的圖象(b為常數(shù)).
(三) 易錯(cuò)易混要明了
1.求函數(shù)的定義域時(shí),關(guān)鍵是依據(jù)含自變量x的代數(shù)式有意義來(lái)列出相應(yīng)的不等式(組)求解,如開(kāi)偶次 23、方根,被開(kāi)方數(shù)一定是非負(fù)數(shù);對(duì)數(shù)式中的真數(shù)是正數(shù).列不等式時(shí),應(yīng)列出所有的不等式,不能遺漏.
2.求函數(shù)單調(diào)區(qū)間時(shí),多個(gè)單調(diào)區(qū)間之間不能用符號(hào)“∪”和“或”連接,可用“和”連接或用“,”隔開(kāi).單調(diào)區(qū)間必須是“區(qū)間”,而不能用集合或不等式代替.
3.判斷函數(shù)的奇偶性時(shí),要注意定義域必須關(guān)于原點(diǎn)對(duì)稱(chēng),有時(shí)還要對(duì)函數(shù)式化簡(jiǎn)整理,但必須注意使定義域不受影響.
4.用換元法求解析式時(shí),要注意新元的取值范圍,即函數(shù)的定義域問(wèn)題.
[針對(duì)練1] 已知f(cos x)=sin2x,則f(x)=________.
解析:令t=cos x,且t∈[-1,1],則f(t)=1-t2,t∈[-1,1],即f 24、(x)=1-x2,x∈[-1,1].
答案:1-x2,x∈[-1,1]
5.分段函數(shù)是在其定義域的不同子集上,分別用不同的式子來(lái)表示對(duì)應(yīng)法則的函數(shù),它是一個(gè)函數(shù),而不是幾個(gè)函數(shù).
[針對(duì)練2] 已知函數(shù)f(x)=則f=________.
解析:f=ln=-1,f=f(-1)=e-1=.
答案:
[課時(shí)跟蹤檢測(cè)]
A組——12+4提速練
一、選擇題
1.函數(shù)f(x)= 的定義域?yàn)? )
A.(0,2) B.(0,2]
C.(2,+∞) D.[2,+∞ 25、)
解析:選C 由題意可知x滿足log2x-1>0,即log2x>log22,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)得x>2,即函數(shù)f(x)的定義域是(2,+∞).
2.已知函數(shù)f(x)=則下列結(jié)論正確的是( )
A.函數(shù)f(x)是偶函數(shù)
B.函數(shù)f(x)是減函數(shù)
C.函數(shù)f(x)是周期函數(shù)
D.函數(shù)f(x)的值域?yàn)閇-1,+∞)
解析:選D 由函數(shù)f(x)的解析式,知f(1)=2,f(-1)=cos(-1)=cos 1,f(1)≠f(-1),則f(x)不是偶函數(shù).當(dāng)x>0時(shí),f(x)=x2+1,則f(x)在區(qū)間(0,+∞)上是增函數(shù),且函數(shù)值f(x)>1;當(dāng)x≤0時(shí),f(x)=cos x, 26、則f(x)在區(qū)間(-∞,0]上不是單調(diào)函數(shù),且函數(shù)值f(x) ∈[-1,1].所以函數(shù)f(x)不是單調(diào)函數(shù),也不是周期函數(shù),其值域?yàn)閇-1,+∞).故選D.
3.(2017·合肥模擬) 函數(shù)y=的圖象大致是( )
解析:選D 易知函數(shù)y=是偶函數(shù),可排除B,當(dāng)x>0時(shí),y=xln x,y′=ln x+1,令y′>0,得x>e-1,所以當(dāng)x>0時(shí),函數(shù)在(e-1,+∞)上單調(diào)遞增,結(jié)合圖象可知D正確,故選D.
4.已知函數(shù)f(x-1)是定義在R上的奇函數(shù),且在[0,+∞)上是增函數(shù),則函數(shù)f(x)的圖象可能是( )
解析:選B 函數(shù)f(x-1)的圖象向左平移1個(gè)單位,即可得到 27、函數(shù)f(x)的圖象.因?yàn)楹瘮?shù)f(x-1)是定義在R上的奇函數(shù),所以函數(shù)f(x-1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),所以函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱(chēng),排除A,C,D,故選B.
5.(2017·長(zhǎng)春質(zhì)檢)下列函數(shù)中,既是奇函數(shù)又在(0,+∞)上單調(diào)遞增的是( )
A.y=ex+e-x B.y=ln(|x|+1)
C.y= D.y=x-
解析:選D 選項(xiàng)A,B是偶函數(shù),排除;選項(xiàng)C是奇函數(shù),但在(0,+∞)上不是單調(diào)函數(shù),不符合題意;選項(xiàng)D中,y=x-是奇函數(shù),且y=x和y=-在(0,+∞)上均為增函數(shù),故y=x-在(0,+∞)上為增函數(shù),所以選項(xiàng)D正確.故選D.
6.(2017 28、·陜西質(zhì)檢)奇函數(shù)f(x)的定義域?yàn)镽,若f(x+2)為偶函數(shù),則f(8)=( )
A.-1 B.0
C.1 D.-2
解析:選B 由奇函數(shù)f(x)的定義域?yàn)镽,可得f(0)=0,由f(x+2)為偶函數(shù),可得f(-x+2)=f(x+2),故f(x+4)=f[(x+2)+2]=f[-(x+2)+2]=f(-x)=-f(x),則f(x+8)=f[(x+4)+4]=-f(x+4)=-[-f(x)]=f(x),即函數(shù)f(x)的周期為8,所以f(8)=f(0)=0,故選B.
7.函數(shù)y=+在[-2,2]上的圖象大致為( )
解析:選B 當(dāng)x∈(0,2]時(shí),函數(shù)y==,x2>0恒 29、成立,令g(x)=ln x+1,則g(x)在(0,2]上單調(diào)遞增,當(dāng)x=時(shí),y=0,則當(dāng)x∈時(shí),y=<0,x∈時(shí),y=>0,∴函數(shù)y=在(0,2]上只有一個(gè)零點(diǎn),排除A,C,D,只有選項(xiàng)B符合題意.
8.(2017·天津高考)已知奇函數(shù)f(x)在R上是增函數(shù),g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),則a,b,c的大小關(guān)系為( )
A.a(chǎn)0時(shí),f(x)> 30、0,
所以g(x)在(0,+∞)上單調(diào)遞增,且g(x)>0.
又a=g(-log25.1)=g(log25.1),b=g(20.8),c=g(3),
20.8<2=log24 31、0時(shí),f(x)=x3-1,
∴f(-1)=-2,∴f(6)=2.故選D.
10.已知函數(shù)f(x)的定義域?yàn)镽,且f(x)=若方程f(x)=x+a有兩個(gè)不同實(shí)根,則a的取值范圍為( )
A.(-∞,1) B.(-∞,1]
C.(0,1) D.(-∞,+∞)
解析:選A x≤0時(shí),f(x)=2-x-1,
0 32、是(-∞,1).
11.(2018屆高三·廣西三市聯(lián)考)已知函數(shù)f(x)=e|x|,函數(shù)g(x)=對(duì)任意的x∈[1,m](m>1),都有f(x-2)≤g(x),則m的取值范圍是( )
A.(1,2+ln 2) B.
C.(ln 2,2] D.
解析:選D 作出函數(shù)y1=e|x-2|和y=g(x)的圖象,如圖所示,由圖可知當(dāng)x=1時(shí),y1=g(1),又當(dāng)x=4時(shí),y1=e2 33、為R,則實(shí)數(shù)a的取值范圍是( )
A.(1,2] B.(-∞,2]
C.(0,2] D.[2,+∞)
解析:選A 依題意,當(dāng)x≥1時(shí),f(x)=1+log2x單調(diào)遞增,f(x)=1+log2x在區(qū)間[1,+∞)上的值域是[1,+∞).因此,要使函數(shù)f(x)的值域是R,則需函數(shù)f(x)在(-∞,1)上的值域M?(-∞,1).①當(dāng)a-1<0,即a<1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞減,函數(shù)f(x)在(-∞,1)上的值域M=(-a+3,+∞),顯然此時(shí)不能滿足M?(-∞,1),因此a<1不滿足題意;②當(dāng)a-1=0,即a=1時(shí),函數(shù)f(x)在(-∞,1)上的值域M={2},此時(shí)不 34、能滿足M?(-∞,1),因此a=1不滿足題意;③當(dāng)a-1>0,即a>1時(shí),函數(shù)f(x)在(-∞,1)上單調(diào)遞增,函數(shù)f(x)在(-∞,1)上的值域M=(-∞,-a+3),由M?(-∞,1)得解得1
35、
又f(x)為偶函數(shù),∴f(919)=f(1)=f(-1)=6.
答案:6
14.(2017·陜西質(zhì)檢)已知函數(shù)f(x)=,下列關(guān)于函數(shù)f(x)的結(jié)論:
①y=f(x)的值域?yàn)镽;
②y=f(x)在(0,+∞)上單調(diào)遞減;
③y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng);
④y=f(x)的圖象與直線y=ax(a≠0)至少有一個(gè)交點(diǎn).
其中正確結(jié)論的序號(hào)是________.
解析:函數(shù)f(x)==其圖象如圖所示,由圖象可知f(x)的值域?yàn)?-∞,-1)∪(0,+∞),故①錯(cuò);f(x)在(0,1)和(1,+∞)上單調(diào)遞減,而在(0,+∞)上不是單調(diào)的,故②錯(cuò);f(x)的圖象關(guān)于y軸對(duì)稱(chēng),故③正確 36、;由于f(x)在每個(gè)象限都有圖象,所以與過(guò)原點(diǎn)的直線y=ax(a≠0)至少有一個(gè)交點(diǎn),故④正確.
答案:③④
15.(2017·惠州調(diào)研)已知定義在R上的函數(shù)y=f(x)滿足條件fx+=-f(x),且函數(shù)y=fx-為奇函數(shù),給出以下四個(gè)結(jié)論:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);
③函數(shù)f(x)為R上的偶函數(shù);
④函數(shù)f(x)為R上的單調(diào)函數(shù).
其中正確結(jié)論的序號(hào)為_(kāi)_______.
解析:f(x+3)=f=-f=f(x),所以f(x)是周期為3的周期函數(shù),①正確;函數(shù)fx-是奇函數(shù),其圖象關(guān)于點(diǎn)(0,0)對(duì)稱(chēng),則f(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),②正確;因?yàn)閒 37、(x)的圖象關(guān)于點(diǎn)對(duì)稱(chēng),-=,所以f(-x)=-f-+x,又f=-f=-f(x),所以f(-x)=f(x),③正確;f(x)是周期函數(shù),在R上不可能是單調(diào)函數(shù),④錯(cuò)誤.故正確結(jié)論的序號(hào)為①②③.
答案:①②③
16.(2017·合肥質(zhì)檢)函數(shù)f(x)=-x3+3x2-ax-2a,若存在唯一的正整數(shù)x0,使得f(x0)>0,則a的取值范圍是________.
解析:由f(x)>0可得,a(x+2)<-x3+3x2,原問(wèn)題等價(jià)于不等式a(x+2)<-x3+3x2的解集中只包含唯一的正整數(shù),結(jié)合函數(shù)g(x)=a(x+2),h(x)=-x3+3x2的圖象(圖略)可知唯一的正整數(shù)只可能是1或2 38、.若x0=1,則即解得a∈?;
若x0=2,則即
答案:
B組——能力小題保分練
1.(2017·鄭州質(zhì)檢)函數(shù)f(x)=cos x的圖象大致為( )
解析:選C 依題意,f(-x)=cos(-x)=cos x=cos x=-f(x),因此函數(shù)f(x)是奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱(chēng),結(jié)合各選項(xiàng)知,選項(xiàng)A,B均不正確;當(dāng)0 39、-25)
C.f(11) 40、11).
3.(2017·成都模擬)已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過(guò)點(diǎn).若函數(shù)g(x)的定義域?yàn)镽,當(dāng)x∈[-2,2]時(shí),有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是( )
A.g(π) 41、x)且g(x)單調(diào)遞減,所以x∈[2,6]時(shí),g(x)單調(diào)遞增,根據(jù)對(duì)稱(chēng)性,可知在[-2,6]上距離對(duì)稱(chēng)軸x=2越遠(yuǎn)的自變量,對(duì)應(yīng)的函數(shù)值越大,所以g() 42、a(x>0)關(guān)于直線y=-x對(duì)稱(chēng),且f(-2)=2f(-1),則a=________.
解析:依題意得,曲線y=f(x)即為-x=(-y)2+a(y<0),化簡(jiǎn)后得y=-,即f(x)=-,于是有-=-2,解得a=.
答案:
6.如圖放置的邊長(zhǎng)為1的正方形PABC沿x軸滾動(dòng),點(diǎn)B恰好經(jīng)過(guò)原點(diǎn).設(shè)頂點(diǎn)P(x,y)的軌跡方程是y=f(x),則對(duì)函數(shù)y=f(x)有下列判斷:
①函數(shù)y=f(x)是偶函數(shù);②對(duì)任意的x∈R,都有f(x+2)=f(x-2);③函數(shù)y=f(x)在區(qū)間[2,3]上單調(diào)遞減;④f(x)dx=.
其中判斷正確的序號(hào)是________.(寫(xiě)出所有正確的序號(hào))
解析:如圖, 43、從函數(shù)y=f(x)的圖象可以判斷出,圖象關(guān)于y軸對(duì)稱(chēng),每過(guò)4個(gè)單位長(zhǎng)度圖象重復(fù)出現(xiàn)一次,且在區(qū)間[2,3]上其函數(shù)值隨x增大而增大,所以①②正確,③錯(cuò)誤;又函數(shù)圖象與直線x=0,x=2,x軸圍成的圖形由一個(gè)半徑為、圓心角為的扇形,一個(gè)半徑為1、圓心角為的扇形和一個(gè)直角邊長(zhǎng)為1的等腰直角三角形組成,其面積S=×π×2+×π+=,所以④正確.
答案:①②④
第二講 小題考法——基本初等函數(shù)、函數(shù)與方程
考點(diǎn)(一)
主要考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的圖象辨析以及比較大小問(wèn)題.
基本初等函數(shù)的圖象與性質(zhì)
[典例感悟]
[典例] (1)若當(dāng)x∈R時(shí),函數(shù)f(x)=a|x|( 44、a>0且a≠1)滿足f(x)≤1,則函數(shù)y=loga(x+1)的圖象大致為( )
(2)(2017·全國(guó)卷Ⅰ)設(shè)x,y,z為正數(shù),且2x=3y=5z,則( )
A.2x<3y<5z B.5z<2x<3y
C.3y<5z<2x D.3y<2x<5z
[解析] (1)由a|x|≤1(x∈R),知01,
∴x=log2k,y=log3k,z=log5k.
∵2x-3y=2log2k-3log3k=-
=
=
=>0,
∴2x>3y;
45、
∵3y-5z=3log3k-5log5k=-
==
=<0,
∴3y<5z;∵2x-5z=2log2k-5log5k=-
==
=<0,
∴5z>2x.∴5z>2x>3y.
[答案] (1)C (2)D
[方法技巧]
3招破解指數(shù)、對(duì)數(shù)、冪函數(shù)值的大小比較問(wèn)題
(1)底數(shù)相同,指數(shù)不同的冪用指數(shù)函數(shù)的單調(diào)性進(jìn)行比較.
(2)底數(shù)相同,真數(shù)不同的對(duì)數(shù)值用對(duì)數(shù)函數(shù)的單調(diào)性比較.
(3)底數(shù)不同、指數(shù)也不同,或底數(shù)不同、真數(shù)也不同的兩個(gè)數(shù),常引入中間量或結(jié)合圖象比較大?。?
[演練沖關(guān)]
1.(2017·北京高考)已知函數(shù)f(x)=3x-x,則f(x)( )
A.是奇 46、函數(shù),且在R上是增函數(shù)
B.是偶函數(shù),且在R上是增函數(shù)
C.是奇函數(shù),且在R上是減函數(shù)
D.是偶函數(shù),且在R上是減函數(shù)
解析:選A 因?yàn)閒(x)=3x-x,且定義域?yàn)镽,所以f(-x)=3-x--x=x-3x=-3x-x=-f(x),即函數(shù)f(x)是奇函數(shù).
又y=3x在R上是增函數(shù),y=x在R上是減函數(shù),所以f(x)=3x-x在R上是增函數(shù).
2.(2017·洛陽(yáng)統(tǒng)考)已知f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)單調(diào)遞減,設(shè)a=-21.2,b=-0.8,c=2log52,則f(a),f(b),f(c)的大小關(guān)系為( )
A.f(c) 47、) 48、題意,當(dāng)AC∥y軸,△ABC為正三角形時(shí),|AC|=log24x-log2x=2,點(diǎn)B到直線AC的距離為,設(shè)點(diǎn)B(x0,2+log2x0),則點(diǎn)A(x0+,3+log2x0).由點(diǎn)A在函數(shù)y=log24x的圖象上,得log24(x0+)=3+log2x0=log28x0,則4(x0+)=8x0,x0=,即點(diǎn)B的橫坐標(biāo)是.
答案:
考點(diǎn)(二)
主要考查利用函數(shù)零點(diǎn)存在性定理或數(shù)形結(jié)合法確定函數(shù)零點(diǎn)的個(gè)數(shù)或其存在范圍,以及應(yīng)用零點(diǎn)求參數(shù)的值(或范圍).
函 數(shù) 的 零 點(diǎn)
[典例感悟]
[典例] (1)(2017·南昌模擬)已知f(x)是定義在R上的奇函數(shù),且x>0時(shí),f(x)=l 49、n x-x+1,則函數(shù)g(x)=f(x)-ex(e為自然對(duì)數(shù)的底數(shù))的零點(diǎn)個(gè)數(shù)是( )
A.0 B.1
C.2 D.3
(2)(2017·成都模擬)已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(-x-1)=f(x-1),當(dāng)x∈[-1,0]時(shí),f(x)=-x3,則關(guān)于x的方程f(x)=|cos πx|在上的所有實(shí)數(shù)解之和為( )
A.-7 B.-6
C.-3 D.-1
(3)(2017·全國(guó)卷Ⅲ)已知函數(shù)f(x)=x2-2x+a(ex-1+e-x+1)有唯一零點(diǎn),則a=( )
A.- B.
C. D.1
[解析] (1)當(dāng)x>0時(shí),f(x)=ln x- 50、x+1,f′(x)=-1=,所以x∈(0,1)時(shí),f′(x)>0,此時(shí)f(x)單調(diào)遞增;x∈(1,+∞)時(shí),f′(x)<0,此時(shí)f(x)單調(diào)遞減.因此,當(dāng)x>0時(shí),f(x)max=f(1)=ln 1-1+1=0.根據(jù)函數(shù)f(x)是定義在R上的奇函數(shù)作出函數(shù)y=f(x)與y=ex的大致圖象,如圖,觀察到函數(shù)y=f(x)與y=ex的圖象有兩個(gè)交點(diǎn),所以函數(shù)g(x)=f(x)-ex(e為自然對(duì)數(shù)的底數(shù))有2個(gè)零點(diǎn).故選C.
(2)因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以f(-x-1)=f(x+1)=f(x-1),即f(x)=f(x+2),所以函數(shù)f(x)的周期為2,又當(dāng)x∈[-1,0]時(shí),f(x)=-x3, 51、由此在同一平面直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)與y=|cos πx|的圖象,如圖所示.
由圖知關(guān)于x的方程f(x)=|cos πx|在上的實(shí)數(shù)解有7個(gè).不妨設(shè)x1 52、+1)≥2a,
要使f(x)有唯一零點(diǎn),則必有2a=1,即a=.
若a≤0,則f(x)的零點(diǎn)不唯一.
綜上所述,a=.
[答案] (1)C (2)A (3)C
[方法技巧]
1.判斷函數(shù)零點(diǎn)個(gè)數(shù)的方法
直接法
直接求零點(diǎn),令f(x)=0,則方程解的個(gè)數(shù)即為函數(shù)零點(diǎn)的個(gè)數(shù)
定理法
利用零點(diǎn)存在性定理,利用該定理只能確定函數(shù)的某些零點(diǎn)是否存在,必須結(jié)合函數(shù)的圖象和性質(zhì)(如單調(diào)性)才能確定函數(shù)有多少個(gè)零點(diǎn)
數(shù)形
結(jié)合法
對(duì)于給定的函數(shù)不能直接求解或畫(huà)出圖象的,常分解轉(zhuǎn)化為兩個(gè)能畫(huà)出圖象的函數(shù)的交點(diǎn)問(wèn)題
2.利用函數(shù)零點(diǎn)的情況求參數(shù)值或取值范圍的方法
(1)利用零點(diǎn)存 53、在的判定定理構(gòu)建不等式求解.
(2)分離參數(shù)后轉(zhuǎn)化為求函數(shù)的值域(最值)問(wèn)題求解.
(3)轉(zhuǎn)化為兩個(gè)熟悉的函數(shù)圖象的位置關(guān)系問(wèn)題,從而構(gòu)建不等式求解.
[演練沖關(guān)]
1.已知函數(shù)f(x)=函數(shù)g(x)=3-f(2-x),則函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為( )
A.2 B.3
C.4 D.5
解析:選A 由已知條件得g(x)=3-f(2-x)=函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)即為函數(shù)y=f(x)與y=g(x)圖象交點(diǎn)的個(gè)數(shù),分別畫(huà)出函數(shù)y=f(x),y=g(x)的草圖,觀察發(fā)現(xiàn)有2個(gè)交點(diǎn).故選A.
2.(2017·洛陽(yáng)統(tǒng)考)已知函數(shù)f(x)=ln x-a 54、x2+x有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(-∞,1) B.(0,1)
C. D.
解析:選B 依題意,關(guān)于x的方程ax-1=有兩個(gè)不等的正實(shí)數(shù)根.記g(x)=,則g′(x)=,當(dāng)0 55、不同的交點(diǎn),則a的取值范圍是(0,1),故選B.
3.(2017·山東高考)已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx-1)2的圖象與y=+m的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)m的取值范圍是( )
A.(0,1]∪[2,+∞)
B.(0,1]∪[3,+∞)
C.(0, ]∪[2,+∞)
D.(0, ]∪[3,+∞)
解析:選B 在同一直角坐標(biāo)系中,分別作出函數(shù)f(x)=(mx-1)2=m22與g(x)=+m的大致圖象.
分兩種情形:
(1)當(dāng)0 56、②,要使f(x)與g(x)的圖象在[0,1]上只有一個(gè)交點(diǎn),只需g(1)≤f(1),即1+m≤(m-1)2,解得m≥3或m≤0(舍去).
綜上所述,m∈(0,1]∪[3,+∞).
[必備知能·自主補(bǔ)缺]
(一) 主干知識(shí)要記牢
1.指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的對(duì)比表
解析式
y=ax(a>0與a≠1)
y=logax(a>0與a≠1)
圖象
定義域
R
(0,+∞)
值域
(0,+∞)
R
單調(diào)性
0<a<1時(shí),在R上是減函數(shù);a>1時(shí),在R上是增函數(shù)
0<a 57、<1時(shí),在(0,+∞)上是減函數(shù);a>1時(shí),在(0,+∞)上是增函數(shù)
兩圖象的對(duì)稱(chēng)性
關(guān)于直線y=x對(duì)稱(chēng)
2.方程的根與函數(shù)的零點(diǎn)
(1)方程的根與函數(shù)零點(diǎn)的關(guān)系
由函數(shù)零點(diǎn)的定義,可知函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸的交點(diǎn)的橫坐標(biāo).所以方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn).
(2)函數(shù)零點(diǎn)的存在性定理
如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且f(a)·f(b)<0,那么函數(shù)f(x)在區(qū)間(a,b)內(nèi)至少有一個(gè)零點(diǎn),即存在c∈(a,b),使得f( 58、c)=0,這個(gè)c也就是方程f(x)=0的實(shí)數(shù)根.
[針對(duì)練1] 在下列區(qū)間中,函數(shù)f(x)=ex+4x-3的零點(diǎn)所在的區(qū)間為( )
A. B.
C. D.
解析:選C 因?yàn)閒=e+4×-3=e-2<0,f=e+4×-3=e-1>0,f·f<0,所以f(x)=ex+4x-3的零點(diǎn)所在的區(qū)間為.
(二) 易錯(cuò)易混要明了
1.不能準(zhǔn)確理解基本初等函數(shù)的定義和性質(zhì).如討論函數(shù)y=ax(a>0,a≠1)的單調(diào)性時(shí)忽視字母a的取值范圍,忽視ax>0;研究對(duì)數(shù)函數(shù)y=logax(a>0,a≠1)時(shí)忽視真數(shù)與底數(shù)的限制條件.
2.易混淆函數(shù)的零點(diǎn)和函數(shù)圖象與x軸的交點(diǎn),不能把函數(shù)零點(diǎn)、 59、方程的解、不等式解集的端點(diǎn)值進(jìn)行準(zhǔn)確互化.
3.函數(shù)f(x)=ax2+bx+c有且只有一個(gè)零點(diǎn),要注意討論a是否為零.
[針對(duì)練2] 函數(shù)f(x)=mx2-2x+1有且僅有一個(gè)正實(shí)數(shù)零點(diǎn),則實(shí)數(shù)m的取值范圍為_(kāi)_______.
解析:當(dāng)m=0時(shí),f(x)=-2x+1,則x=為函數(shù)的零點(diǎn).
當(dāng)m≠0時(shí),若Δ=4-4m=0,即當(dāng)m=1時(shí),x=1是函數(shù)唯一的零點(diǎn).
若Δ=4-4m≠0,即m≠1時(shí),顯然x=0不是函數(shù)的零點(diǎn).
這樣函數(shù)有且僅有一個(gè)正實(shí)數(shù)零點(diǎn)等價(jià)于方程f(x)=mx2-2x+1有一個(gè)正根一個(gè)負(fù)根.
因此<0.則m<0.綜上知實(shí)數(shù)m的取值范圍是(-∞,0]∪{1}.
答案: 60、(-∞,0]∪{1}
[課時(shí)跟蹤檢測(cè)]
A組——12+4提速練
一、選擇題
1.(2017·沈陽(yáng)質(zhì)檢)函數(shù)f(x)=ln(x2+1)的圖象大致是( )
解析:選A 函數(shù)f(x)的定義域?yàn)镽,由f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x)知函數(shù)f(x)是偶函數(shù),則其圖象關(guān)于y軸對(duì)稱(chēng),排除C;又由f(0)=ln 1=0,可排除B,D.故選A.
2.(2016·全國(guó)卷Ⅲ)已知a=2,b=3,c=25,則( )
A.b<a<c B.a(chǎn)<b<c
61、C.b<c<a D.c<a<b
解析:選A a=2=4,b=3,c=25=5.
∵y=x在第一象限內(nèi)為增函數(shù),
又5>4>3,∴c>a>b.
3.(2017·陜西質(zhì)檢)已知a=2-,b=(2log23)-,c=sin xdx,則實(shí)數(shù)a,b,c的大小關(guān)系是( )
A.a(chǎn)>c>b B.b>a>c
C.a(chǎn)>b>c D.c>b>a
解析:選C 依題意得,a=2-,b=3-,c=-cos x=,所以a6=2-2=,b6=3-3=,c6=6=,則a6>b6>c6,即a>b>c,故選C.
4.函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是( )
A.(-2,-1) B 62、.(-1,0)
C.(0,1) D.(1,2)
解析:選C ∵f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,∴f(0)·f(1)<0,故函數(shù)f(x)=ex+x-2的零點(diǎn)所在的一個(gè)區(qū)間是(0,1),故選C.
5.某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入,若該公司2017年全年投入研發(fā)資金130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元的年份是( )
(參考數(shù)據(jù):lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)
A.2020年 B.2021年
C.2022年 D.20 63、23年
解析:選B 設(shè)2017年后的第n年該公司投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元.由130(1+12%)n>200,得1.12n>,兩邊取常用對(duì)數(shù),得n>≈=,∴n≥4,∴從2021年開(kāi)始,該公司投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元.
6.函數(shù)f(x)=的零點(diǎn)個(gè)數(shù)是( )
A.0 B.1
C.2 D.4
解析:選C 當(dāng)x≤0時(shí),f(x)=x2-2,令x2-2=0,得x=(舍去)或x=-,即在區(qū)間(-∞,0]上,函數(shù)只有一個(gè)零點(diǎn).當(dāng)x>0時(shí),f(x)=2x-6+ln x,f′(x)=2+,由x>0知f′(x)>0,∴f(x)在(0,+∞)上單調(diào)遞增,而f(1)=-4<0,f(e) 64、=2e-5>0,f(1)·f(e)<0,從而f(x)在(0,+∞)上只有一個(gè)零點(diǎn).故函數(shù)f(x)的零點(diǎn)個(gè)數(shù)是2.
7.(2017·全國(guó)卷Ⅰ)已知函數(shù)f(x)=ln x+ln(2-x),則( )
A.f(x)在(0,2)單調(diào)遞增
B.f(x)在(0,2)單調(diào)遞減
C.y=f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng)
D.y=f(x)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng)
解析:選C 由題易知,f(x)=ln x+ln(2-x)的定義域?yàn)?0,2),f(x)=ln[x(2-x)]=ln[-(x-1)2+1],由復(fù)合函數(shù)的單調(diào)性知,函數(shù)f(x)=ln x+ln(2-x)在(0,1)單調(diào)遞增,在(1,2)單調(diào)遞 65、減,所以排除A、B;
又f=ln+ln=ln,
f=ln+ln=ln,
所以f=f=ln,所以排除D.故選C.
8.(2017·貴陽(yáng)檢測(cè))已知函數(shù)f(x)=ln(x2-4x-a),若對(duì)任意的m∈R,均存在x0使得f(x0)=m,則實(shí)數(shù)a的取值范圍是( )
A.(-∞,-4) B.(-4,+∞)
C.(-∞,-4] D.[-4,+∞)
解析:選D 依題意得,函數(shù)f(x)的值域?yàn)镽,令函數(shù)g(x)=x2-4x-a,其值域包含(0,+∞),因此對(duì)于方程x2-4x-a=0,有Δ=16+4a≥0,解得a≥-4,即實(shí)數(shù)a的取值范圍是[-4,+∞),故選D.
9.(2018屆高三· 66、河北五校聯(lián)考)函數(shù)y=loga(x+3)-1(a>0,且a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+2=0上,其中m>0,n>0,則+的最小值為( )
A.2 B.4
C. D.
解析:選D 由函數(shù)y=loga(x+3)-1(a>0,且a≠1)知,當(dāng)x=-2時(shí),y=-1,所以A點(diǎn)的坐標(biāo)為(-2,-1),又因?yàn)辄c(diǎn)A在直線mx+ny+2=0上,所以-2m-n+2=0,即2m+n=2,所以+=+=2+++≥+2 =,當(dāng)且僅當(dāng)m=n=時(shí)等號(hào)成立.所以+的最小值為,故選D.
10.(2017·長(zhǎng)春質(zhì)檢)已知定義域?yàn)镽的函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(1,1),且對(duì)任意實(shí)數(shù)x1
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 指向核心素養(yǎng)發(fā)展的高中生物學(xué)1輪復(fù)習(xí)備考建議
- 新課程新評(píng)價(jià)新高考導(dǎo)向下高三化學(xué)備考的新思考
- 新時(shí)代背景下化學(xué)高考備考策略及新課程標(biāo)準(zhǔn)的高中化學(xué)教學(xué)思考
- 2025屆江西省高考政治二輪復(fù)習(xí)備考建議
- 新教材新高考背景下的化學(xué)科學(xué)備考策略
- 新高考背景下的2024年高考化學(xué)二輪復(fù)習(xí)備考策略
- 2025屆高三數(shù)學(xué)二輪復(fù)習(xí)備考交流會(huì)課件
- 2025年高考化學(xué)復(fù)習(xí)研究與展望
- 2024年高考化學(xué)復(fù)習(xí)備考講座
- 2025屆高考數(shù)學(xué)二輪復(fù)習(xí)備考策略和方向
- 2024年感動(dòng)中國(guó)十大人物事跡及頒獎(jiǎng)詞
- XX教育系統(tǒng)單位述職報(bào)告教育工作概述教育成果展示面臨的挑戰(zhàn)未來(lái)規(guī)劃
- 2025《增值稅法》全文解讀學(xué)習(xí)高質(zhì)量發(fā)展的增值稅制度規(guī)范增值稅的征收和繳納
- 初中資料:400個(gè)語(yǔ)文優(yōu)秀作文標(biāo)題
- 初中語(yǔ)文考試專(zhuān)項(xiàng)練習(xí)題(含答案)