《(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 階段分層突破4.4學(xué)案 蘇教版選修4-4》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專用版 )2018-2019學(xué)年高中數(shù)學(xué) 階段分層突破4.4學(xué)案 蘇教版選修4-4(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
階段分層突破4.4
參數(shù)方程
參數(shù)方程與普通方程的互化
將參數(shù)方程化為普通方程實質(zhì)上就是消參的過程,常用的方法有代入消元、利用三角恒等式、整體消元法等,但一定要注意轉(zhuǎn)化的等價性.
把下列曲線的參數(shù)方程化為普通方程,并指出方程所表示的曲線是什么曲線.
(1)(t為參數(shù));
(2)(θ為參數(shù)).
【解】 (1)兩式相除,得t=,
代入任何一個方程中化簡,得x2+y2-2x=0.
∵t2≥0,∴0<x≤2.
∴普通方程為x2+y2-2x=0(0<x≤2).
該方程表示圓心在(1,0),半徑為1的圓除去點(0,0).
(2)由(sin θ+cos θ)2=1+
2、sin 2θ,得x2=y(tǒng)+1.
∵|y|=|sin 2θ|≤1,∴普通方程為x2=y(tǒng)+1(-1≤y≤1).
該方程表示拋物線夾在兩平行線y=1和y=-1之間的部分.
參數(shù)方程的應(yīng)用
參數(shù)方程是研究曲線的輔助工具,多注重參數(shù)方程與普通方程的互化.參數(shù)思想在解題中有著廣泛的應(yīng)用,例如直線參數(shù)方程主要用來解決直線與圓錐曲線的位置關(guān)系問題,在解決這類問題時,利用直線參數(shù)方程中參數(shù)l的幾何意義,可以避免通過解方程組求交點等繁瑣運算,使問題得到簡化.
過點P(2,1)作直線l分別交x軸,y軸的正方向于A、B兩點,求AP·BP值最小時,直線l的方程.
【解】 如圖,設(shè)直線的傾斜角為α(<α
3、<π),直線的參數(shù)方程為(t為參數(shù)).
由于點A的縱坐標(biāo)為0,所以點A對應(yīng)的參數(shù)t1=-;
由于點B的橫坐標(biāo)為0,所以點B對應(yīng)的參數(shù)t2=-.
從而AP·BP=|t1t2|==.
當(dāng)|sin 2α|=1,即當(dāng)α=時,
AP·BP最小,此時直線l的方程為x+y-3=0.
橢圓中心在原點,焦點在x軸上,離心率為,點P(x,y)是橢圓上的一個動點,若2x+y的最大值為10,求橢圓的標(biāo)準(zhǔn)方程.
【導(dǎo)學(xué)號:98990041】
【解】 離心率為,設(shè)橢圓標(biāo)準(zhǔn)方程是+=1,它的參數(shù)方程為(θ是參數(shù)),
2x+y=4ccos θ+3csin θ=5csin(θ+φ)的最大值是5c,由題意得5c=10,所以c=2,
所以橢圓的標(biāo)準(zhǔn)方程是
+=1.
2