2022年高考數(shù)學回歸課本 解三角形教案 舊人教版

上傳人:xt****7 文檔編號:105706596 上傳時間:2022-06-12 格式:DOC 頁數(shù):4 大小:347.52KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學回歸課本 解三角形教案 舊人教版_第1頁
第1頁 / 共4頁
2022年高考數(shù)學回歸課本 解三角形教案 舊人教版_第2頁
第2頁 / 共4頁
2022年高考數(shù)學回歸課本 解三角形教案 舊人教版_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學回歸課本 解三角形教案 舊人教版》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學回歸課本 解三角形教案 舊人教版(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學回歸課本 解三角形教案 舊人教版 一、基礎知識 在本章中約定用A,B,C分別表示△ABC的三個內(nèi)角,a, b, c分別表示它們所對的各邊長,為半周長。 1.正弦定理:=2R(R為△ABC外接圓半徑)。 推論1:△ABC的面積為S△ABC= 推論2:在△ABC中,有bcosC+ccosB=a. 推論3:在△ABC中,A+B=,解a滿足,則a=A. 正弦定理可以在外接圓中由定義證明得到,這里不再給出,下證推論。先證推論1,由正弦函數(shù)定義,BC邊上的高為bsinC,所以S△ABC=;再證推論2,因為B+C=-A,所以sin(B+C)=sinA,即sinBcosC+

2、cosBsinC=sinA,兩邊同乘以2R得bcosC+ccosB=a;再證推論3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等價于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等價于cos(-A+a)=cos(-a+A),因為0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得證。 2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理證明幾個常用的結論。 (1)斯特瓦特定理:在△ABC中,D是BC邊上任意一點,BD=p,DC=q,則AD2= (1) 【證明】 因為c2=AB2=

3、AD2+BD2-2AD·BDcos, 所以c2=AD2+p2-2AD·pcos ① 同理b2=AD2+q2-2AD·qcos, ② 因為ADB+ADC=, 所以cosADB+cosADC=0, 所以q×①+p×②得 qc2+pb2=(p+q)AD2+pq(p+q),即AD2= 注:在(1)式中,若p=q,則為中線長公式 (2)海倫公式:因為b2c2sin2A=b2c2 (1-cos2A)= b2c2 [(b+c)-a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c). 這里 所以S△ABC= 二、方法與例題 1.面積法。 例1 (共

4、線關系的張角公式)如圖所示,從O點發(fā)出的三條射線滿足,另外OP,OQ,OR的長分別為u, w, v,這里α,β,α+β∈(0, ),則P,Q,R的共線的充要條件是 【證明】P,Q,R共線 (α+β)=uwsinα+vwsinβ ,得證。 2.正弦定理的應用。 例2 如圖所示,△ABC內(nèi)有一點P,使得BPC-BAC=CPA-CBA=APB-ACB。 求證:AP·BC=BP·CA=CP·AB。 【證明】 過點P作PDBC,PEAC,PFAB,垂足分別為D,E,F(xiàn),則P,D,C,E;P,E,A,F(xiàn);P,D,B,F(xiàn)三組四點共圓,所以EDF=PDE+PDF=PCA+PBA=BPC-

5、BAC。由題設及BPC+CPA+APB=3600可得BAC+CBA+ACB=1800。 所以BPC-BAC=CPA-CBA=APB-ACB=600。 所以EDF=600,同理DEF=600,所以△DEF是正三角形。 所以DE=EF=DF,由正弦定理,CDsinACB=APsinBAC=BPsinABC,兩邊同時乘以△ABC的外接圓直徑2R,得CP·BA=AP·BC=BP·AC,得證: 例3 如圖所示,△ABC的各邊分別與兩圓⊙O1,⊙O2相切,直線GF與DE交于P,求證:PABC。 【證明】 延長PA交GD于M, 因為O1GBC,O2DBC,所以只需證 由正弦定理, 所以

6、 另一方面,, 所以, 所以,所以PA//O1G, 即PABC,得證。 3.一個常用的代換:在△ABC中,記點A,B,C到內(nèi)切圓的切線長分別為x, y, z,則a=y+z, b=z+x, c=x+y. 例4 在△ABC中,求證:a2(b+c-a)+b2(c+a-b)+c2(a+b-c) ≤3abc. 【證明】 令a=y+z, b=z+x, c=x+y,則 abc=(x+y)(y+z)(z+x) =8xyz=(b+c-a)(a+c-b)(a+b-c) =a2(b+c-a)+b2(c+a-b)+c2(a+b-c)-2abc. 所以a2(b+c-a)+b2(c+a-b)+

7、c2(a+b-c) ≤3abc. 4.三角換元。 例5 設a, b, c∈R+,且abc+a+c=b,試求的最大值。 【解】 由題設,令a=tanα, c=tanγ, b=tanβ, 則tanβ=tan(α+γ), P=2sinγsin(2α+γ)+3cos2γ≤, 當且僅當α+β=,sinγ=,即a=時,Pmax= 例6 在△ABC中,若a+b+c=1,求證: a2+b2+c2+4abc< 【證明】 設a=sin2αcos2β, b=cos2αcos2β, c=sin2β, β. 因為a, b, c為三邊長,所以c<, c>|a-b|, 從而,所以sin2β>|co

8、s2α·cos2β|. 因為1=(a+b+c)2=a2+b2+c2+2(ab+bc+ca), 所以a2+b2+c2+4abc=1-2(ab+bc+ca-2abc). 又ab+bc+ca-2abc=c(a+b)+ab(1-2c) =sin2βcos2β+sin2αcos2α·cos4β·cos2β =[1-cos22β+(1-cos22α)cos4βcos2β] =+cos2β(cos4β-cos22αcos4β-cos2β) >+cos2β(cos4β-sin4β-cos2β)=. 所以a2+b2+c2+4abc< 三、基礎訓練題 1.在△ABC中,邊AB為最長邊,且sin

9、AsinB=,則cosAcosB的最大值為__________. 2.在△ABC中,若AB=1,BC=2,則的取值范圍是__________. 3.在△ABC中,a=4, b+c=5, tanC+tanB+tanCtanB,則△ABC的面積為__________. 4.在△ABC中,3sinA+4cosB=6, 3cosA+4sinB=1,則=__________. 5.在△ABC中,“a>b”是“sinA>sinB”的__________條件. 6.在△ABC中,sinA+cosA>0, tanA-sinA<0,則角A的取值范圍是__________. 7.在△ABC中,sinA

10、=,cosB=,則cosC=__________. 8.在△ABC中,“三邊a, b, c成等差數(shù)列”是“tan”的__________條件. 9.在△ABC中,若sinC=2cosAsinB,則三角形形狀是__________. 10.在△ABC中,tanA·tanB>1,則△ABC為__________角三角形. 11.三角形有一個角是600,夾這個角的兩邊之比是8:5,內(nèi)切圓的面積是12,求這個三角形的面積。 12.已知銳角△ABC的外心為D,過A,B,D三點作圓,分別與AC,BC相交于M,N兩點。求證:△MNC的外接圓半徑等于△ABD的外接圓半徑。 13.已知△ABC中,s

11、inC=,試判斷其形狀。 四、高考水平訓練題 1.在△ABC中,若tanA=, tanB=,且最長邊長為1,則最短邊長為__________. 2.已知n∈N+,則以3,5,n為三邊長的鈍角三角形有________個. 3.已知p, q∈R+, p+q=1,比較大?。簆sin2A+qsin2B__________pqsin2C. 4.在△ABC中,若sin2A+sin2B+sin2C=4sinAsinBsinC,則△ABC 為__________角三角形. 5.若A為△ABC 的內(nèi)角,比較大?。篲_________3. 6.若△ABC滿足acosA=bcosB,則△ABC的形狀為

12、__________. 7.滿足A=600,a=, b=4的三角形有__________個. 8.設為三角形最小內(nèi)角,且acos2+sin2-cos2-asin2=a+1,則a的取值范圍是__________. 9.A,B,C是一段筆直公路上的三點,分別在塔D的西南方向,正西方向,西偏北300方向,且AB=BC=1km,求塔與公路AC段的最近距離。 10.求方程的實數(shù)解。 11.求證: 五、聯(lián)賽一試水平訓練題 1.在△ABC中,b2=ac,則sinB+cosB的取值范圍是____________. 2.在△ABC中,若,則△ABC 的形狀為____________. 3.對任

13、意的△ABC,-(cotA+cotB+cotC),則T的最大值為____________. 4.在△ABC中,的最大值為____________. 5.平面上有四個點A,B,C,D,其中A,B為定點,|AB|=,C,D為動點,且|AD|=|DC|=|BC|=1。記S△ABD=S,S△BCD=T,則S2+T2的取值范圍是____________. 6.在△ABC中,AC=BC,,O為△ABC的一點,,ABO=300,則ACO=____________. 7.在△ABC中,A≥B≥C≥,則乘積的最大值為____________,最小值為__________. 8.在△ABC中,若c-a等

14、于AC邊上的高h,則=____________. 9.如圖所示,M,N分別是△ABC外接圓的弧,AC中點,P為BC上的動點,PM交AB于Q,PN交AC于R,△ABC的內(nèi)心為I,求證:Q,I,R三點共線。 10.如圖所示,P,Q,R分別是△ABC的邊BC,CA,AB上一點,且AQ+AR=BR+BP=CQ+CP。求證:AB+BC+CA≤2(PQ+QR+RP)。 11.在△ABC外作三個等腰三角形△BFC,△ADC,△AEB,使BF=FC,CD=DA,AE=EB,ADC=2BAC,AEB=2ABC,BFC=2ACB,并且AF,BD,CE交于一點,試判斷△ABC的形狀。 六、聯(lián)賽二試水平訓

15、練題 1.已知等腰△ABC,AB=AC,一半圓以BC的中點為圓心,且與兩腰AB和AC分別相切于點D和G,EF與半圓相切,交AB于點E,交AC于點F,過E作AB的垂線,過F作AC的垂線,兩垂線相交于P,作PQBC,Q為垂足。求證:,此處=B。 2.設四邊形ABCD的對角線交于點O,點M和N分別是AD和BC的中點,點H1,H2(不重合)分別是△AOB與△COD的垂心,求證:H1H2MN。 3.已知△ABC,其中BC上有一點M,且△ABM與△ACM的內(nèi)切圓大小相等,求證:,此處(a+b+c), a, b, c分別為△ABC對應三邊之長。 4.已知凸五邊形ABCDE,其中ABC=AED=900

16、,BAC=EAD,BD與CE交于點O,求證:AOBE。 5.已知等腰梯形ABCD,G是對角線BD與AC的交點,過點G作EF與上、下底平行,點E和F分別在AB和CD上,求證:AFB=900的充要條件是AD+BC=CD。 6.AP,AQ,AR,AS是同一個圓中的四條弦,已知PAQ=QAR=RAS,求證:AR(AP+AR)=AQ(AQ+AS)。 7.已知一凸四邊形的邊長依次為a, b, c, d,外接圓半徑為R,如果a2+b2+c2+d2=8R2,試問對此四邊形有何要求? 8.設四邊形ABCD內(nèi)接于圓,BA和CD延長后交于點R,AD和BC延長后交于點P,A,B,C指的都是△ABC的內(nèi)角,求證:若AC與BD交于點Q,則 9.設P是△ABC內(nèi)一點,點P至BC,CA,AB的垂線分別為PD,PE,PF(D,E,F(xiàn)是垂足),求證:PA·PB·PC≥(PD+PE)·(PE+PF)·(PF+PD),并討論等號成立之條件。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!