(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點強化專題 專題5 平面解析幾何 突破點12 圓錐曲線的定義、方程、幾何性質(zhì)教學(xué)案
《(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點強化專題 專題5 平面解析幾何 突破點12 圓錐曲線的定義、方程、幾何性質(zhì)教學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《(浙江專版)2018年高考數(shù)學(xué) 第1部分 重點強化專題 專題5 平面解析幾何 突破點12 圓錐曲線的定義、方程、幾何性質(zhì)教學(xué)案(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 突破點12 圓錐曲線的定義、方程、幾何性質(zhì) (對應(yīng)學(xué)生用書第44頁) [核心知識提煉] 提煉1圓錐曲線的定義 (1)橢圓:|PF1|+|PF2|=2a(2a>|F1F2|). (2)雙曲線:||PF1|-|PF2||=2a(2a<|F1F2|). (3)拋物線:|PF|=|PM|,點F不在直線l上,PM⊥l于M(l為拋物線的準線). 提煉2 圓錐曲線的重要性質(zhì) (1)橢圓、雙曲線中a,b,c之間的關(guān)系 ①在橢圓中:a2=b2+c2;離心率為e==; ②在雙曲線中:c2=a2+b2;離心率為e==. (2)雙曲線的漸近線方程與焦點坐標 ①雙曲線
2、-=1(a>0,b>0)的漸近線方程為y=±x;焦點坐標F1(-c,0),F(xiàn)2(c,0); ②雙曲線-=1(a>0,b>0)的漸近線方程為y=±x,焦點坐標F1(0,-c),F(xiàn)2(0,c). (3)拋物線的焦點坐標與準線方程 ①拋物線y2=±2px(p>0)的焦點坐標為,準線方程為x=?; ②拋物線x2=±2py(p>0)的焦點坐標為,準線方程為y=?. 提煉3弦長問題 (1)直線與圓錐曲線相交時的弦長 斜率為k的直線與圓錐曲線交于點A(x1,y1),B(x2,y2)時,|AB|=|x1-x2|=·或|AB|=|y1-y2|=. (2)拋物線焦點弦的幾個常用結(jié)論
3、 設(shè)AB是過拋物線y2=2px(p>0)焦點F的弦,若A(x1,y1),B(x2,y2),則①x1x2=,y1y2=-p2;②弦長|AB|=x1+x2+p=(α為弦AB的傾斜角);③+=;④以弦AB為直徑的圓與準線相切. [高考真題回訪] 回訪1 橢圓及其性質(zhì) 1.(2017·浙江高考)橢圓+=1的離心率是( ) A. B. C. D. B [∵橢圓方程為+=1, ∴a=3,c===. ∴e==. 故選B.] 2.(2016·浙江高考)已知橢圓C1:+y2=1(m>1)與雙曲線C2:-y2=1(n>0)的焦點重合,e1,e2分別為C1,C2的離心率,則(
4、 )
A.m>n且e1e2>1 B.m>n且e1e2<1
C.m
5、F1,QF,設(shè)QF與直線y=x交于點M. 由題意知M為線段QF的中點,且OM⊥FQ. 又O為線段F1F的中點, ∴F1Q∥OM, ∴F1Q⊥QF,|F1Q|=2|OM|. 在Rt△MOF中,tan∠MOF==,|OF|=c, 可解得|OM|=,|MF|=, 故|QF|=2|MF|=,|QF1|=2|OM|=. 由橢圓的定義得|QF|+|QF1|=+=2a, 整理得b=c,∴a==c, 故e==.] 4.(2014·浙江高考)如圖12-1,設(shè)橢圓C:+=1(a>b>0),動直線l與橢圓C只有一個公共點P,且點P在第一象限. 圖12-1 (1
6、)已知直線l的斜率為k,用a,b,k表示點P的坐標; (2)若過原點O的直線l1與l垂直,證明:點P到直線l1的距離的最大值為a-b. [解] (1)設(shè)直線l的方程為y=kx+m(k<0),由消去y,得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. 2分 由于l與橢圓C只有一個公共點,故Δ=0,即b2-m2+a2k2=0,解得點P的坐標為. 4分 又點P在第一象限, 故點P的坐標為. 6分 (2)證明:由于直線l1過原點O且與l垂直,故直線l1的方程為x+ky=0,所以點P到直線l1的距離 d=, 8分 整理,得d=. 10分 因為a
7、2k2+≥2ab, 所以≤=a-b, 12分 當(dāng)且僅當(dāng)k2=時等號成立. 所以,點P到直線l1的距離的最大值為a-b. 15分 回訪2 雙曲線及其性質(zhì) 5.(2016·浙江高考)設(shè)雙曲線x2-=1的左、右焦點分別為F1,F(xiàn)2.若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是________. (2,8) [∵雙曲線x2-=1的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,∴|F1F2|=4,||PF1|-|PF2||=2.若△F1PF2為銳角三角形,則由余弦定理知|PF1|2+|PF2|2-16>0,可化為(|PF1|+|PF2|)2-2|P
8、F1|·|PF2|>16①.由||PF1|-|PF2||=2,得(|PF1|+|PF2|)2-4|PF1||PF2|=4.故2|PF1||PF2|=,代入不等式①可得(|PF1|+|PF2|)2>28,解得|PF1|+|PF2|>2.不妨設(shè)P在左支上,∵|PF1|2+16-|PF2|2>0,即(|PF1|+|PF2|)·(|PF1|-|PF2|)>-16,又|PF1|-|PF2|=-2, ∴|PF1|+|PF2|<8.故2<|PF1|+|PF2|<8.] 6.(2015·浙江高考)雙曲線-y2=1的焦距是________,漸近線方程是________. 2 y=±x [由雙曲線標準方
9、程,知雙曲線焦點在x軸上,且a2=2,b2=1,∴c2=a2+b2=3,即c=,∴焦距2c=2,漸近線方程為y=±x,即y=±x.] 7.(2014·浙江高考)設(shè)直線x-3y+m=0(m≠0)與雙曲線-=1(a>0,b>0)的兩條漸近線分別交于點A,B.若點P(m,0)滿足|PA|=|PB|,則該雙曲線的離心率是________. [雙曲線-=1的漸近線方程為y=±x. 由得A, 由得B, 所以AB的中點C坐標為. 設(shè)直線l:x-3y+m=0(m≠0), 因為|PA|=|PB|,所以PC⊥l, 所以kPC=-3,化簡得a2=4b2. 在雙曲線中,c2=a2+
10、b2=5b2,所以e==.] 回訪3 拋物線及其性質(zhì) 8.(2015·浙江高考)如圖12-2,設(shè)拋物線y2=4x的焦點為F,不經(jīng)過焦點的直線上有三個不同的點A,B,C,其中點A,B在拋物線上,點C在y軸上,則△BCF與△ACF的面積之比是( ) 圖12-2 A. B. C. D. A [由圖形可知,△BCF與△ACF有公共的頂點F,且A,B,C三點共線,易知△BCF與△ACF的面積之比就等于.由拋物線方程知焦點F(1,0),作準線l,則l的方程為x=-1.∵點A,B在拋物線上,過A,B分別作AK,BH與準線垂直,垂足分別為點K,H,且與y軸分別交于點N,M.由拋物線定義
11、,得|BM|=|BF|-1,|AN|=|AF|-1.在△CAN中,BM∥AN,∴==.] 9.(2016·浙江高考)若拋物線y2=4x上的點M到焦點的距離為10,則M點到y(tǒng)軸的距離是________. 9 [設(shè)點M的橫坐標為x,則點M到準線x=-1的距離為x+1,由拋物線的定義知x+1=10,∴x=9, ∴點M到y(tǒng)軸的距離為9.] 10.(2016·浙江高考)如圖12-3,設(shè)拋物線y2=2px(p>0)的焦點為F,拋物線上的點A到y(tǒng)軸的距離等于|AF|-1. (1)求p的值; (2)若直線AF交拋物線于另一點B,過B與x軸平行的直線和過F與AB垂直的直線交于點N,AN與
12、x軸交于點M,求M的橫坐標的取值范圍. [解] (1)由題意可得,拋物線上點A到焦點F的距離等于點A到直線x=-1的距離, 2分 由拋物線的定義得=1,即p=2. 4分 (2)由(1)得,拋物線方程為y2=4x,F(xiàn)(1,0),可設(shè)A(t2,2t),t≠0,t≠±1. 因為AF不垂直于y軸,可設(shè)直線AF:x=sy+1(s≠0), 由消去x得y2-4sy-4=0, 6分 故y1y2=-4,所以B. 7分 又直線AB的斜率為,故直線FN的斜率為-,從而得直線FN:y=-(x-1),直線BN:y=-,所以N. 8分 設(shè)M(m,0),由A,M,N三點共線得=,
13、于是m==2+, 11分 所以m<0或m>2. 經(jīng)檢驗,m<0或m>2滿足題意. 綜上,點M的橫坐標的取值范圍是(-∞,0)∪(2,+∞). 15分 (對應(yīng)學(xué)生用書第46頁) 熱點題型1 圓錐曲線的定義、標準方程 題型分析:圓錐曲線的定義、標準方程是高考??純?nèi)容,主要以選擇、填空的形式考查,解題時分兩步走:第一步,依定義定“型”,第二步,待定系數(shù)法求“值”. 【例1】 (1)已知方程-=1表示雙曲線,且該雙曲線兩焦點間的距離為4,則n的取值范圍是( ) 【導(dǎo)學(xué)號:68334125】 A.(-1,3) B.(-1,) C.(0,3) D.(0,) (2
14、)已知拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,Q是直線PF與C的一個交點,若=4,則|QF|=( )
A. B.3
C. D.2
(1)A (2)B [(1)若雙曲線的焦點在x軸上,則
又∵(m2+n)+(3m2-n)=4,∴m2=1,∴
∴-1
15、法指津] 求解圓錐曲線標準方程的方法是“先定型,后計算” 1.定型,就是指定類型,也就是確定圓錐曲線的焦點位置,從而設(shè)出標準方程. 2.計算,即利用待定系數(shù)法求出方程中的a2,b2或p.另外,當(dāng)焦點位置無法確定時,拋物線常設(shè)為y2=2ax或x2=2ay(a≠0),橢圓常設(shè)mx2+ny2=1(m>0,n>0),雙曲線常設(shè)為mx2-ny2=1(mn>0). [變式訓(xùn)練1] (1)經(jīng)過點(2,1),且漸近線與圓x2+(y-2)2=1相切的雙曲線的標準方程為( ) A.-=1 B.-y2=1 C.-=1 D.-=1 (2)(2017·金華十校第一學(xué)期調(diào)研)已知拋物線C:y2=2p
16、x(p>0),O為坐標原點,F(xiàn)為其焦點,準線與x軸交點為E,P為拋物線上任意一點,則( ) 圖12-4 A.有最小值 B.有最小值1 C.無最小值 D.最小值與p有關(guān) (1)A (2)A [(1)設(shè)雙曲線的漸近線方程為y=kx,即kx-y=0,由題意知=1,解得k=±,則雙曲線的焦點在x軸上,設(shè)雙曲線方程為-=1, 則有解得故選A. (2)過點P作PF′垂直于準線交準線于F′.設(shè)P,故|PF′|=+,|EF′|=y(tǒng),因為=≤1,此時有最小值,故選A.] 熱點題型2 圓錐曲線的幾何性質(zhì) 題型分析:圓錐曲線的幾何性質(zhì)是高考考查的重點和熱點,其中求圓錐曲線的離心率是最
17、熱門的考點之一,建立關(guān)于a,c的方程或不等式是求解的關(guān)鍵. 【例2】 (1)已知O為坐標原點,F(xiàn)是橢圓C:+=1(a>b>0)的左焦點,A,B分別為C的左、右頂點.P為C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為( ) A. B. C. D. (2)(2017·杭州第二次質(zhì)檢)設(shè)拋物線y2=2px(p>0)的焦點為F,點A,B在拋物線上,且∠AFB=120°,弦AB的中點M在準線l上的射影為M1,則的最大值為________. (1)A (2) [(1)如圖所示,由題意得A(-a,0)
18、,B(a,0),F(xiàn)(-c,0).由PF⊥x軸得P. 設(shè)E(0,m),又PF∥OE,得=, 則|MF|=. ① 又由OE∥MF,得=, 則|MF|=. ② 由①②得a-c=(a+c),即a=3c,所以e==. 故選A. (2)如圖所示,由拋物線的定義以及梯形的中位線定理得|MM1|=,在△ABF中,由余弦定理得|AB|2=|AF|2+|BF|2-2|AF|·|BF|cos =|AF|2+|BF|2+|AF|·|BF|=(|AF|+|BF|)2-|AF|·|BF|≥(|AF|+|BF|)2-2=3|MM1|2,當(dāng)且僅當(dāng)|AF|=|BF|時,等號成立,故取得最大值
19、.] [方法指津] 1.求橢圓、雙曲線離心率(離心率范圍)的方法 求橢圓、雙曲線的離心率或離心率的范圍,關(guān)鍵是根據(jù)已知條件確定a,b,c的等量關(guān)系或不等關(guān)系,然后把b用a,c代換,求的值. 2.雙曲線的漸近線的求法及用法 (1)求法:把雙曲線標準方程等號右邊的1改為零,分解因式可得. (2)用法:①可得或的值. ②利用漸近線方程設(shè)所求雙曲線的方程. [變式訓(xùn)練2] (1)已知F1,F(xiàn)2是雙曲線E:-=1的左,右焦點,點M在E上,MF1與x軸垂直,sin∠MF2F1=,則E的離心率為( ) A. B. C. D.2 (2)(名師押題)已知
20、橢圓+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,過點F2的直線與橢圓交于A,B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則橢圓的離心率為( ) 【導(dǎo)學(xué)號:68334126】 A. B.2- C.-2 D.- (1)A (2)D [(1)法一:如圖,因為MF1與x軸垂直,所以|MF1|=.又sin∠MF2F1=,所以=, 即|MF2|=3|MF1|.由雙曲線的定義得2a=|MF2|-|MF1|=2|MF1|=,所以b2=a2,所以c2=b2+a2=2a2,所以離心率e==. 法二:如圖,因為MF1⊥x軸,所以|MF1|=. 在Rt△MF1F2中,由sin
21、∠MF2F1=得 tan∠MF2F1=. 所以=,即=,即=, 整理得c2-ac-a2=0, 兩邊同除以a2得e2-e-1=0. 解得e=(負值舍去). (2)設(shè)|F1F2|=2c,|AF1|=m, 若△F1AB是以A為直角頂點的等腰直角三角形, ∴|AB|=|AF1|=m,|BF1|=m. 由橢圓的定義可知△F1AB的周長為4a, ∴4a=2m+m,m=2(2-)a. ∴|AF2|=2a-m=(2-2)a. ∵|AF1|2+|AF2|2=|F1F2|2, ∴4(2-)2a2+4(-1)2a2=4c2, ∴e2=9-6,e=-.] 11
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔(dān)當(dāng)時代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展營造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識培訓(xùn)冬季用電防火安全
- 2025加強政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗總結(jié)(認真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會長長的路慢慢地走