中考數(shù)學(xué)專題訓(xùn)練 反比例函數(shù)與一次函數(shù)的綜合
《中考數(shù)學(xué)專題訓(xùn)練 反比例函數(shù)與一次函數(shù)的綜合》由會員分享,可在線閱讀,更多相關(guān)《中考數(shù)學(xué)專題訓(xùn)練 反比例函數(shù)與一次函數(shù)的綜合(43頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、中考數(shù)學(xué)專題訓(xùn)練 反比例函數(shù)與一次函數(shù)的綜合 1.在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y=(k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,﹣2). (1)求△AHO的周長; (2)求該反比例函數(shù)和一次函數(shù)的解析式. 2.如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=. (1)求反比例函數(shù)的解析式; (
2、2)連接OB,求△AOB的面積. 3.如圖,直線y=x+2與雙曲線相交于點A(m,3),與x軸交于點C. (1)求雙曲線解析式; (2)點P在x軸上,如果△ACP的面積為3,求點P的坐標(biāo). 4.如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B. (1)求一次函數(shù)和反比例函數(shù)的解析式; (2)求點B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值? 5.如圖,已知反比例函數(shù)
3、與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,﹣k+4). (1)試確定這兩個函數(shù)的表達(dá)式; (2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍. 6.如圖,已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=kx+b的圖象交于兩點A(﹣2,1)、B(a,﹣2). (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)若一次函數(shù)y2=kx+b的圖象交y軸于點C,求△AOC的面積(O為坐標(biāo)原點); (3)求使y1>y2時x的取值范圍. 7.已知:如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=mx+b的圖象交于
4、A(1,3),B(n,﹣1)兩點. (1)求反比例函數(shù)與一次函數(shù)的解析式; (2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值. 8.如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點. (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求直線AB與x軸的交點C的坐標(biāo)及三角形AOB的面積. 9.如圖,已知點A(﹣4,2)、B( n,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個交點: (1)求點B的坐標(biāo)和一次函數(shù)的解析式; (2)求△AOB的面積; (3)根據(jù)圖象寫出使一次函數(shù)的值小于反
5、比例函數(shù)值的x的取值范圍. 10.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,與x軸交于點C,與y軸交于點D.已知OA=,tan∠AOC=,點B的坐標(biāo)為(,m). (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求△AOB的面積. 11.如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點,且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2,求: (1)一次函數(shù)的解析式; (2)△AOB的面積; (3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍. 12.已知:如圖所示,在平面直角
6、坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A、B兩點,與x交于點C,與y軸交于點D,OC=1,BC=5,. (1)求該反比例函數(shù)和一次函數(shù)的解析式; (2)連接BO,AO,求△AOB的面積. (3)觀察圖象,直接寫出不等式的解集. 13.如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣的圖象交于A、B兩點,與坐標(biāo)軸交于M、N兩點.且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2. (1)求一次函數(shù)的解析式; (2)求△AOB的面積; (3)觀察圖象,直接寫出y1>y2時x的取值范圍.
7、 14.如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象相交于A(2,3),B(﹣3,n)兩點. (1)求一次函數(shù)與反比例函數(shù)的解析式. (2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集. (3)連接OA、OB,求S△ABO. 15.如圖,已知一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象相交于點A(﹣2,m)和點B(4,﹣2),與x軸交于點C (1)求一次函數(shù)與反比例函數(shù)的解析式; (2)求△AOB的面積. 16.如圖,一次函數(shù)y=mx+n(m≠0)與反比例函數(shù)y=(k≠0)的圖象相交
8、于A(﹣1,2),B(2,b)兩點,與y軸相交于點C (1)求一次函數(shù)與反比例函數(shù)的解析式; (2)若點D與點C關(guān)于x軸對稱,求△ABD的面積. 17.如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點,與x軸、y軸分別交于C、D兩點.已知:OA=,tanAOC=,點B的坐標(biāo)為(,m) (1)求該反比例函數(shù)的解析式和點D的坐標(biāo); (2)點M在射線CA上,且MA=2AC,求△MOB的面積. 18.已知直線y=kx+b與x軸、y軸分別交于A、B兩點,與反比例函數(shù)交于一象限內(nèi)的P(,
9、n),Q(4,m)兩點,且tan∠BOP=: (1)求反比例函數(shù)和直線的函數(shù)表達(dá)式; (2)求△OPQ的面積. 19.如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,與x軸、y軸交于點C、D兩點,點B的橫坐標(biāo)為1,OC=OD,點P 在反比例函數(shù)圖象上且到x軸、y軸距離相等. (1)求一次函數(shù)的解析式; (2)求△APB的面積. 20.如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于B、A兩點,與反比例函數(shù)的圖象交于點C,連接CO,過C作CD⊥x軸于D,已知tan∠ABO=,OB=
10、4,OD=2. (1)求直線AB和反比例函數(shù)的解析式; (2)在x軸上有一點E,使△CDE與△COB的面積相等,求點E的坐標(biāo). 21.如圖,在平面直角坐標(biāo)系中,點A是反比例函數(shù)y=(k≠0)圖象上一點,AB⊥x軸于B點,一次函數(shù)y=ax+b(a≠0)的圖象交y軸于D(0,﹣2),交x軸于C點,并與反比例函數(shù)的圖象交于A,E兩點,連接OA,若△AOD的面積為4,且點C為OB中點. (1)分別求雙曲線及直線AE的解析式; (2)若點Q在雙曲線上,且S△QAB=4S△BAC,求點Q的坐標(biāo). 22.如圖,已知一次函數(shù)y=k
11、1x+b的圖象分別x軸,y軸交于A、B兩點,且與反比例函數(shù)y=交于C、E兩點,點C在第二象限,過點C作CD⊥x軸于點D,OD=1,OE=,cos∠AOE= (1)求反比例函數(shù)與一次函數(shù)的解析式; (2)求△OCE的面積. 23.如圖,一次函數(shù)y=x+2的圖象與x軸交于點B,與反比例函數(shù)y=(k≠0)的圖象的一個交點為A(2,m). (1)求反比例函數(shù)的表達(dá)式; (2)過點A作AC⊥x軸,垂足為點C,設(shè)點D在反比例函數(shù)圖象上,且△DBC的面積等于6,請求出點D的坐標(biāo); (3)請直接寫出不等式x+2<成立的x取值范圍. 24.如
12、圖,已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=k2x+b的圖象交于A、B兩點,A(2,n),B(﹣1,﹣4). (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求△AOB的面積; (3)觀察圖象,直接寫出不等式y(tǒng)1>y2的解集. 25.如圖,已知反比例函數(shù)y=(k<0)的圖象經(jīng)過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為2. (1)求k和m的值; (2)若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸的交點為點C,試求出△ABC的面積. 26.如圖,已知一次函數(shù)y=k1x+b的圖象分別與x軸、y軸的正半軸交于A、B兩點,且與反
13、比例函數(shù)y=交于C、E兩點,點C在第二象限,過點C作CD⊥x軸于點D,OA=OB=2,OD=1. (1)求反比例函數(shù)與一次函數(shù)的解析式; (2)求△OCE的面積. 27.如圖,已知直線y=mx+b(m≠0)與雙曲線y=(k≠0)交于A(﹣3,﹣1)與B(n,6)兩點,連接OA、OB. (1)求直線與雙曲線的表達(dá)式; (2)求△AOB的面積. 28.如圖,直線y=﹣2和雙曲線y=相交于A(b,1),點P在直線y=x﹣2上,且P點的縱坐標(biāo)為﹣1,過P作PQ∥y軸交雙曲線于點Q. (1)求Q點的坐標(biāo); (2)求△APQ的面積. 29.如圖,在一次函數(shù)y=ax+b的圖象與
14、反比例函數(shù)y=的圖象相交于A(﹣4,﹣2),B(m,4),與y軸相交于點C. (1)求反比例函數(shù)與一次函數(shù)的表達(dá)式; (2)求△AOB的面積. 30.已知直線y=kx+b與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y=交于一象限內(nèi)的P(,n),Q(4,m)兩點,且tan∠BOP=. (1)求雙曲線和直線AB的函數(shù)表達(dá)式; (2)求△OPQ的面積; (3)當(dāng)kx+b>時,請根據(jù)圖象直接寫出x的取值范圍. xx級中考數(shù)學(xué)專題復(fù)習(xí)-反比例函數(shù)與一次函數(shù)的交點 參考答案與試題解析 一.解答題(共30小題) 1.(xx?重慶)在平面直角坐標(biāo)系中,一次函數(shù)y=a
15、x+b(a≠0)的圖形與反比例函數(shù)y=(k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,﹣2). (1)求△AHO的周長; (2)求該反比例函數(shù)和一次函數(shù)的解析式. 【分析】(1)根據(jù)正切函數(shù),可得AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案; (2)根據(jù)待定系數(shù)法,可得函數(shù)解析式. 【解答】解:(1)由OH=3,tan∠AOH=,得 AH=4.即A(﹣4,3). 由勾股定理,得 AO==5, △AHO的周長=AO+AH+OH=3+4+5=12; (2)將A點坐
16、標(biāo)代入y=(k≠0),得 k=﹣4×3=﹣12, 反比例函數(shù)的解析式為y=; 當(dāng)y=﹣2時,﹣2=,解得x=6,即B(6,﹣2). 將A、B點坐標(biāo)代入y=ax+b,得 , 解得, 一次函數(shù)的解析式為y=﹣x+1. 【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,利用待定系數(shù)法是解題關(guān)鍵. 2.(xx?重慶)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=. (1)求反比例函數(shù)的解析式; (2)連接OB,求△AOB的面積. 【
17、分析】(1)過點A作AE⊥x軸于點E,設(shè)反比例函數(shù)解析式為y=.通過解直角三角形求出線段AE、OE的長度,即求出點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法求出反比例函數(shù)解析式即可; (2)由點B在反比例函數(shù)圖象上可求出點B的坐標(biāo),設(shè)直線AB的解析式為y=ax+b,由點A、B的坐標(biāo)利用待定系數(shù)法求出直線AB的解析式,令該解析式中y=0即可求出點C的坐標(biāo),再利用三角形的面積公式即可得出結(jié)論. 【解答】解:(1)過點A作AE⊥x軸于點E,如圖所示. 設(shè)反比例函數(shù)解析式為y=. ∵AE⊥x軸, ∴∠AEO=90°. 在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°, ∴A
18、E=AO?sin∠AOC=3,OE==4, ∴點A的坐標(biāo)為(﹣4,3). ∵點A(﹣4,3)在反比例函數(shù)y=的圖象上, ∴3=,解得:k=﹣12. ∴反比例函數(shù)解析式為y=﹣. (2)∵點B(m,﹣4)在反比例函數(shù)y=﹣的圖象上, ∴﹣4=﹣,解得:m=3, ∴點B的坐標(biāo)為(3,﹣4). 設(shè)直線AB的解析式為y=ax+b, 將點A(﹣4,3)、點B(3,﹣4)代入y=ax+b中得: ,解得:, ∴一次函數(shù)解析式為y=﹣x﹣1. 令一次函數(shù)y=﹣x﹣1中y=0,則0=﹣x﹣1, 解得:x=﹣1,即點C的坐標(biāo)為(﹣1,0). S△AOB=OC?(yA﹣yB)=×1×[3
19、﹣(﹣4)]=. 【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、待定系數(shù)法求函數(shù)解析式以及三角形的面積公式,解題的關(guān)鍵是:(1)求出點A的坐標(biāo);(2)求出直線AB的解析式.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)點的坐標(biāo)利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵. 3.(xx?南充)如圖,直線y=x+2與雙曲線相交于點A(m,3),與x軸交于點C. (1)求雙曲線解析式; (2)點P在x軸上,如果△ACP的面積為3,求點P的坐標(biāo). 【分析】(1)把A坐標(biāo)代入直線解析式求出m的值,確定出A坐標(biāo),即可確定出雙曲線解析式; (2)設(shè)P(x,0),表示出PC的長,高為A縱坐標(biāo)
20、,根據(jù)三角形ACP面積求出x的值,確定出P坐標(biāo)即可. 【解答】解:(1)把A(m,3)代入直線解析式得:3=m+2,即m=2, ∴A(2,3), 把A坐標(biāo)代入y=,得k=6, 則雙曲線解析式為y=; (2)對于直線y=x+2,令y=0,得到x=﹣4,即C(﹣4,0), 設(shè)P(x,0),可得PC=|x+4|, ∵△ACP面積為3, ∴|x+4|?3=3,即|x+4|=2, 解得:x=﹣2或x=﹣6, 則P坐標(biāo)為(﹣2,0)或(﹣6,0). 【點評】此題考查了反比例函數(shù)與一次函數(shù)的交點問題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,坐標(biāo)與圖形性質(zhì),以及三角形面積求法,熟練掌握待
21、定系數(shù)法是解本題的關(guān)鍵. 4.(xx?資陽)如圖,一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣,0),且與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B. (1)求一次函數(shù)和反比例函數(shù)的解析式; (2)求點B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值? 【分析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式; (2)根據(jù)二元一次方程組,可得函數(shù)圖象的交點,根據(jù)一次函數(shù)圖象位于反比例函數(shù)圖象的下方,可得答案. 【解答】解:(1)一次函數(shù)y=kx+b(k≠0)的圖象過點P(﹣,0)和A(﹣2,1), ∴,解得, ∴一次函數(shù)的
22、解析式為y=﹣2x﹣3, 反比例函數(shù)y=(m≠0)的圖象過點A(﹣2,1), ∴,解得m=﹣2, ∴反比例函數(shù)的解析式為y=﹣; (2), 解得,或, ∴B(,﹣4) 由圖象可知,當(dāng)﹣2<x<0或x>時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值. 【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法是求函數(shù)解析式的關(guān)鍵. 5.(xx?成都)如圖,已知反比例函數(shù)與一次函數(shù)y=x+b的圖象在第一象限相交于點A(1,﹣k+4). (1)試確定這兩個函數(shù)的表達(dá)式; (2)求出這兩個函數(shù)圖象的另一個交點B的坐標(biāo),并根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取
23、值范圍. 【分析】(1)把A(1,﹣k+4)代入解析式y(tǒng)=,即可求出k的值;把求出的A點坐標(biāo)代入一次函數(shù)y=x+b的解析式,即可求出b的值;從而求出這兩個函數(shù)的表達(dá)式; (2)將兩個函數(shù)的解析式組成方程組,其解即為另一點的坐標(biāo).當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直接根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍. 【解答】解:(1)∵已知反比例函數(shù)經(jīng)過點A(1,﹣k+4), ∴,即﹣k+4=k, ∴k=2, ∴A(1,2), ∵一次函數(shù)y=x+b的圖象經(jīng)過點A(1,2), ∴2=1+b, ∴b=1, ∴反比例函數(shù)的表達(dá)式為. 一次函數(shù)的表
24、達(dá)式為y=x+1. (2)由, 消去y,得x2+x﹣2=0. 即(x+2)(x﹣1)=0, ∴x=﹣2或x=1. ∴y=﹣1或y=2. ∴或. ∵點B在第三象限, ∴點B的坐標(biāo)為(﹣2,﹣1), 由圖象可知,當(dāng)反比例函數(shù)的值大于一次函數(shù)的值時,x的取值范圍是x<﹣2或0<x<1. 【點評】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義. 6.(xx?瀘州)如圖,已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=kx+b的圖象交于兩點A(﹣2,1)、B(a,﹣2). (1)求
25、反比例函數(shù)和一次函數(shù)的解析式; (2)若一次函數(shù)y2=kx+b的圖象交y軸于點C,求△AOC的面積(O為坐標(biāo)原點); (3)求使y1>y2時x的取值范圍. 【分析】(1)先根據(jù)點A的坐標(biāo)求出反比例函數(shù)的解析式為y1=﹣,再求出B的坐標(biāo)是(1,﹣2),利用待定系數(shù)法求一次函數(shù)的解析式; (2)在一次函數(shù)的解析式中,令x=0,得出對應(yīng)的y2的值,即得出直線y2=﹣x﹣1與y軸交點C的坐標(biāo),從而求出△AOC的面積; (3)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時,直線在雙曲線的下方,直接根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍﹣2<x<0或x>1. 【解答】解:(1)∵函數(shù)y
26、1=的圖象過點A(﹣2,1),即1=; ∴m=﹣2,即y1=﹣, 又∵點B(a,﹣2)在y1=﹣上, ∴a=1,∴B(1,﹣2). 又∵一次函數(shù)y2=kx+b過A、B兩點, 即. 解之得. ∴y2=﹣x﹣1. (2)∵x=0,∴y2=﹣x﹣1=﹣1, 即y2=﹣x﹣1與y軸交點C(0,﹣1). 設(shè)點A的橫坐標(biāo)為xA, ∴△AOC的面積S△OAC==×1×2=1. (3)要使y1>y2,即函數(shù)y1的圖象總在函數(shù)y2的圖象上方. ∴﹣2<x<0,或x>1. 【點評】本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式.這里體現(xiàn)了數(shù)形結(jié)合的思想. 7.(
27、xx?甘南州)已知:如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點. (1)求反比例函數(shù)與一次函數(shù)的解析式; (2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值. 【分析】(1)反比例函數(shù)y=的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,﹣1)兩點,把A點坐標(biāo)代入反比例函數(shù)解析式,即可求出k,得到反比例函數(shù)的解析式.將B(n,﹣1)代入反比例函數(shù)的解析式求得B點坐標(biāo),然后再把A、B點的坐標(biāo)代入一次函數(shù)的解析式,利用待定系數(shù)法求出一次函數(shù)的解析式; (2)根據(jù)圖象,分別在第一、三象限求出反比例函數(shù)的值大于一次函數(shù)
28、的值時x的取值范圍. 【解答】解:(1)∵A(1,3)在y=的圖象上, ∴k=3,∴y=. 又∵B(n,﹣1)在y=的圖象上, ∴n=﹣3,即B(﹣3,﹣1) ∴ 解得:m=1,b=2, ∴反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=x+2. (2)從圖象上可知,當(dāng)x<﹣3或0<x<1時,反比例函數(shù)的值大于一次函數(shù)的值. 【點評】本類題目的解決需把點的坐標(biāo)代入函數(shù)解析式,靈活利用方程組求出所需字母的值,從而求出函數(shù)解析式,另外要學(xué)會利用圖象,確定x的取值范圍. 8.(xx?南充)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y
29、=的圖象的兩個交點. (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求直線AB與x軸的交點C的坐標(biāo)及三角形AOB的面積. 【分析】(1)把A(﹣4,n),B(2,﹣4)分別代入一次函數(shù)y=kx+b和反比例函數(shù)y=,運用待定系數(shù)法分別求其解析式; (2)把三角形AOB的面積看成是三角形AOC和三角形OCB的面積之和進(jìn)行計算. 【解答】解:(1)∵B(2,﹣4)在y=上, ∴m=﹣8. ∴反比例函數(shù)的解析式為y=﹣. ∵點A(﹣4,n)在y=﹣上, ∴n=2. ∴A(﹣4,2). ∵y=kx+b經(jīng)過A(﹣4,2),B(2,﹣4), ∴. 解之得 . ∴一次函數(shù)的解
30、析式為y=﹣x﹣2. (2)∵C是直線AB與x軸的交點, ∴當(dāng)y=0時,x=﹣2. ∴點C(﹣2,0). ∴OC=2. ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6. 【點評】本題考查了用待定系數(shù)法確定反比例函數(shù)的比例系數(shù)k,求出函數(shù)解析式;要能夠熟練借助直線和y軸的交點運用分割法求得不規(guī)則圖形的面積. 9.(xx?資陽)如圖,已知點A(﹣4,2)、B( n,﹣4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)圖象的兩個交點: (1)求點B的坐標(biāo)和一次函數(shù)的解析式; (2)求△AOB的面積; (3)根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)值的x的取值
31、范圍. 【分析】(1)由A和B都在反比例函數(shù)圖象上,故把兩點坐標(biāo)代入到反比例解析式中,列出關(guān)于m與n的方程組,求出方程組的解得到m與n的值,確定出A的坐標(biāo)及反比例函數(shù)解析式,把確定出的A坐標(biāo)及B的坐標(biāo)代入到一次函數(shù)解析式中,得到關(guān)于k與b的方程組,求出方程組的解得到k與b的值,確定出一次函數(shù)解析式; (2)令一次函數(shù)解析式中x為0,求出此時y的值,即可得到一次函數(shù)與y軸交點C的坐標(biāo),得到OC的長,三角形AOB的面積分為三角形AOC及三角形BOC面積之和,且這兩三角形底都為OC,高分別為A和B的橫坐標(biāo)的絕對值,利用三角形的面積公式即可求出三角形ABC的面積; (3)根據(jù)圖象和交點坐標(biāo)即
32、可得出結(jié)果. 【解答】解:(1)∵m=﹣8, ∴n=2, 則y=kx+b過A(﹣4,2),B(n,﹣4)兩點, ∴ 解得k=﹣1,b=﹣2. 故B(2,﹣4),一次函數(shù)的解析式為y=﹣x﹣2; (2)由(1)得一次函數(shù)y=﹣x﹣2, 令x=0,解得y=﹣2, ∴一次函數(shù)與y軸交點為C(0,﹣2), ∴OC=2, ∴S△AOB=S△AOC+S△BOC =OC?|y點A橫坐標(biāo)|+OC?|y點B橫坐標(biāo)| =×2×4+×2×2=6. S△AOB=6; (3)一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍:﹣4<x<0或x>2. 【點評】此題考查了一次函數(shù)與反比例
33、函數(shù)的交點問題,涉及的知識有利用待定系數(shù)法求函數(shù)解析式,兩函數(shù)交點坐標(biāo)的意義,一次函數(shù)與坐標(biāo)軸交點的求法,以及三角形的面積公式,利用了數(shù)形結(jié)合的思想.第一問利用的方法為待定系數(shù)法,即根據(jù)題意把兩交點坐標(biāo)分別代入兩函數(shù)解析式中,得到方程組,求出方程組的解確定出函數(shù)解析式中的字母常數(shù),從而確定出函數(shù)解析式,第二問要求學(xué)生借助圖形,找出點坐標(biāo)與三角形邊長及邊上高的關(guān)系,進(jìn)而把所求三角形分為兩三角形來求面積. 10.(xx?四川)如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于A、B兩點,與x軸交于點C,與y軸交于點D.已知OA=,tan∠AOC=,點B的坐標(biāo)為(,m). (1)求
34、反比例函數(shù)和一次函數(shù)的解析式; (2)求△AOB的面積. 【分析】(1)根據(jù)tan∠AOC=,且OA=,結(jié)合勾股定理可以求得點A的坐標(biāo),進(jìn)一步代入y=中,得到反比例函數(shù)的解析式;然后根據(jù)反比例函數(shù)的解析式得到點B的坐標(biāo),再根據(jù)待定系數(shù)法求一次函數(shù)解析式; (2)三角形AOB的面積可利用,求和的方法即等于S△AOC+S△COB來求. 【解答】解:(1)過點A作AH⊥x于點H. 在RT△AHO中,tan∠AOH==, 所以O(shè)H=2AH. 又AH2+HO2=OA2,且OA=, 所以AH=1,OH=2, 即點A(﹣2,1). 代入y=得 k=﹣2. ∴反比例函數(shù)的解析式為y
35、=﹣. 又因為點B的坐標(biāo)為(,m), 代入解得m=﹣4. ∴B(,﹣4). 把A(﹣2,1)B(,﹣4)代入y=ax+b,得 , ∴a=﹣2,b=﹣3. ∴一次函數(shù)的解析式為y=﹣2x﹣3. (2)在y=﹣2x﹣3中,當(dāng)y=0時,x=﹣. 即C(,0). ∴S△AOB=S△AOC+S△COB=(1+4)×=. 【點評】此題綜合考查了解直角三角形、待定系數(shù)法、和函數(shù)的基本知識,難易程度適中. 11.(xx?樂至縣一模)如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于A,B兩點,且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2,求: (1)一次函數(shù)的解析式;
36、 (2)△AOB的面積; (3)直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍. 【分析】(1)把點A(﹣2,4),B(4,﹣2)代入一次函數(shù)y=kx+b即可求出k及b的值; (2)先求出C點的坐標(biāo),根據(jù)S△AOB=S△AOC+S△BOC即可求解; (3)由圖象即可得出答案; 【解答】解:(1)由題意A(﹣2,4),B(4,﹣2), ∵一次函數(shù)過A、B兩點, ∴, 解得, ∴一次函數(shù)的解析式為y=﹣x+2; (2)設(shè)直線AB與y軸交于C,則C(0,2), ∵S△AOC=×OC×|Ax|,S△BOC=×OC×|Bx| ∴S△AOB=S△AOC+S△B
37、OC=?OC?|Ax|+?OC?|Bx|==6; (3)由圖象可知:一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍是x<﹣2或0<x<4. 【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,屬于基礎(chǔ)題,關(guān)鍵是掌握用待定系數(shù)法求解函數(shù)解析式. 12.(xx?重慶校級模擬)已知:如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A、B兩點,與x交于點C,與y軸交于點D,OC=1,BC=5,. (1)求該反比例函數(shù)和一次函數(shù)的解析式; (2)連接BO,AO,求△AOB的面積. (3)觀察圖象,直接寫出不等式的解集.
38、 【分析】(1)先根據(jù)解直角三角形求得點D和點B的坐標(biāo),再利用C、D兩點的坐標(biāo)求得一次函數(shù)解析式,利用點B的坐標(biāo)求得反比例函數(shù)解析式; (2)先根據(jù)解方程組求得兩個函數(shù)圖象的交點A的坐標(biāo),再將x軸作為分割線,求得△AOB的面積; (3)根據(jù)函數(shù)圖象進(jìn)行觀察,寫出一次函數(shù)圖象在反比例函數(shù)圖象下方時所有點的橫坐標(biāo)的集合即可. 【解答】解:(1)∵ ∴直角三角形OCD中,=,即CD=OD 又∵OC=1 ∴12+OD2=(OD)2 解得OD=,即D(0,﹣) 將C(1,0)和D(0,﹣)代入一次函數(shù)y=ax+b,可得 ,解得 ∴一次函數(shù)的解析式為y=x﹣ 過B作BE⊥x軸,垂
39、足為E ∵直角三角形BCE中,BC=5, ∴BE=3,CE==4 ∴OE=4﹣1=3,即B(﹣3,﹣3) 將B(﹣3,﹣3)代入反比例函數(shù),可得k=9 ∴反比例函數(shù)的解析式為y=; (2)解方程組,可得, ∴A(4,) ∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=; (3)根據(jù)圖象可得,不等式的解集為:x<﹣3或0<x<4. 【點評】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,需要掌握待定系數(shù)法求函數(shù)解析式的方法,以及根據(jù)兩個函數(shù)圖象的交點坐標(biāo)求有關(guān)不等式解集的方法.解答此類試題的依據(jù)是:①函數(shù)圖象上點的坐標(biāo)滿足函數(shù)解析式;②不等式的解集就是其
40、所對應(yīng)的函數(shù)圖象上滿足條件的所有點的橫坐標(biāo)的集合. 13.(xx?重慶校級一模)如圖,已知一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣的圖象交于A、B兩點,與坐標(biāo)軸交于M、N兩點.且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是﹣2. (1)求一次函數(shù)的解析式; (2)求△AOB的面積; (3)觀察圖象,直接寫出y1>y2時x的取值范圍. 【分析】(1)先根據(jù)反比例函數(shù)解析式求得兩個交點坐標(biāo),再根據(jù)待定系數(shù)法求得一次函數(shù)解析式; (2)將兩條坐標(biāo)軸作為△AOB的分割線,求得△AOB的面積; (3)根據(jù)兩個函數(shù)圖象交點的坐標(biāo),寫出一次函數(shù)圖象在反比例函數(shù)圖象上方時所有點的橫
41、坐標(biāo)的集合即可. 【解答】解:(1)設(shè)點A坐標(biāo)為(﹣2,m),點B坐標(biāo)為(n,﹣2) ∵一次函數(shù)y1=kx+b(k≠0)的圖象與反比例函數(shù)y2=﹣的圖象交于A、B兩點 ∴將A(﹣2,m)B(n,﹣2)代入反比例函數(shù)y2=﹣可得,m=4,n=4 ∴將A(﹣2,4)、B(4,﹣2)代入一次函數(shù)y1=kx+b,可得 ,解得 ∴一次函數(shù)的解析式為y1=﹣x+2; (2)在一次函數(shù)y1=﹣x+2中, 當(dāng)x=0時,y=2,即N(0,2);當(dāng)y=0時,x=2,即M(2,0) ∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6; (3)根
42、據(jù)圖象可得,當(dāng)y1>y2時,x的取值范圍為:x<﹣2或0<x<4 【點評】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,解決問題的關(guān)鍵是掌握根據(jù)函數(shù)圖象的交點坐標(biāo)求一次函數(shù)解析式和有關(guān)不等式解集的方法.解答此類試題的依據(jù)是:①函數(shù)圖象的交點坐標(biāo)滿足兩個函數(shù)解析式;②不等式的解集就是其所對應(yīng)的函數(shù)圖象上滿足條件的所有點的橫坐標(biāo)的集合. 14.(xx?重慶校級模擬)如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象相交于A(2,3),B(﹣3,n)兩點. (1)求一次函數(shù)與反比例函數(shù)的解析式. (2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集. (3)連接OA、OB,求S△ABO
43、. 【分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征求出m和n,利用待定系數(shù)法求出一次函數(shù)的解析式; (2)根據(jù)函數(shù)圖象得到答案; (3)求出直線與x軸的交點坐標(biāo),根據(jù)三角形的面積公式計算即可. 【解答】解:(1)∵反比例函數(shù)的圖象經(jīng)過A(2,3), ∴m=2×3=6, ∴反比例函數(shù)的解析式為:y=, ∵反比例函數(shù)的圖象經(jīng)過于B(﹣3,n), ∴n==﹣2, ∴點B的坐標(biāo)(﹣3,﹣2), 由題意得,, 解得,, ∴一次函數(shù)的解析式為:y=x+1; (2)由圖象可知,不等式kx+b>的解集為:﹣3<x<0或x>2; (3)直線y=x+1與x軸的交點C的坐標(biāo)為(﹣1,
44、0), 則OC=1, 則S△ABO=S△OBC+S△ACO=×1×2+×1×3=. 【點評】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,掌握待定系數(shù)法求函數(shù)解析式的一般步驟是解題的關(guān)鍵,注意數(shù)形結(jié)合思想的運用. 15.(xx?成華區(qū)模擬)如圖,已知一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象相交于點A(﹣2,m)和點B(4,﹣2),與x軸交于點C (1)求一次函數(shù)與反比例函數(shù)的解析式; (2)求△AOB的面積. 【分析】(1)由B點的坐標(biāo)根據(jù)待定系數(shù)法即可求得在反比例函數(shù)的解析式,代入A(﹣2,m)即可求得m,再由待定系數(shù)法求出一次函數(shù)解析式; (2)由直線解
45、析式求得C點的坐標(biāo),從而求出△AOB的面積. 【解答】解:(1)∵B(4,﹣2)在反比例函數(shù)y=的圖象上, ∴k=4×(﹣2)=﹣8, 又∵A(﹣2,M)在反比例函數(shù)y=的圖象上, ∴﹣2m=﹣8, ∴m=4, ∴A(﹣2,4), 又∵AB是一次函數(shù)y=ax+b的上的點, ∴ 解得,a=﹣1,b=2, ∴一次函數(shù)的解析式為y=﹣x+2,反比例函數(shù)的解析式y(tǒng)=﹣; (2)由直線y=﹣x+2可知C(2,0), 所以△AOB的面積=×2×4+×2×2=6. 【點評】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,以及用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,是基礎(chǔ)知識要熟練掌握
46、. 16.(xx?重慶校級一模)如圖,一次函數(shù)y=mx+n(m≠0)與反比例函數(shù)y=(k≠0)的圖象相交于A(﹣1,2),B(2,b)兩點,與y軸相交于點C (1)求一次函數(shù)與反比例函數(shù)的解析式; (2)若點D與點C關(guān)于x軸對稱,求△ABD的面積. 【分析】(1)把A點坐標(biāo)代入反比例函數(shù)解析式可求得k,再把B點坐標(biāo)代入可求得b,再利用待定系數(shù)法可求得一次函數(shù)解析式; (2)可先求得D點坐標(biāo),再利用三角形的面積計算即可. 【解答】解: (1)∵反比例函數(shù)y=(k≠0)的圖象過A(﹣1,2), ∴k=﹣1×2=﹣2, ∴反比例函數(shù)解析式為y=﹣, 當(dāng)x=2時,y=﹣1
47、, 即B點坐標(biāo)為(2,﹣1), ∵一次函數(shù)y=mx+n(m≠0)過A、B兩點, ∴把A、B兩點坐標(biāo)代入可得,解得, ∴一次函數(shù)解析式為y=﹣x+1; (2)在y=﹣x+1中,當(dāng)x=0時,y=1, ∴C點坐標(biāo)為(0,1), ∵點D與點C關(guān)于x軸對稱, ∴D點坐標(biāo)為(0,﹣1), ∴CD=2, ∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3. 【點評】本題主要考查一次函數(shù)和反比例函數(shù)的交點,掌握兩函數(shù)圖象的交點坐標(biāo)滿足每一個函數(shù)解析式是解題的關(guān)鍵. 17.(xx?重慶校級二模)如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象
48、交于A、B兩點,與x軸、y軸分別交于C、D兩點.已知:OA=,tanAOC=,點B的坐標(biāo)為(,m) (1)求該反比例函數(shù)的解析式和點D的坐標(biāo); (2)點M在射線CA上,且MA=2AC,求△MOB的面積. 【分析】(1)過A作AE⊥x軸于點E,在Rt△AOE中,可根據(jù)OA的長求得A點坐標(biāo),代入反比例函數(shù)解析式可求反比例函數(shù)解析式,進(jìn)一步可求得B點坐標(biāo),利用待定系數(shù)法可求得直線AB的解析式,則可求得D點坐標(biāo); (2)過M作MF⊥x軸于點F,可證得△MFC∽△AEC,可求得MF的長,代入直線AB解析式可求得M點坐標(biāo),進(jìn)一步可求得△MOB的面積. 【解答】解: (1)如圖1,過A作AE
49、⊥x軸于E, 在Rt△AOE中,tan∠AOC==, 設(shè)AE=a,則OE=3a, ∴OA==a, ∵OA=, ∴a=1, ∴AE=1,OE=3, ∴A點坐標(biāo)為(﹣3,1), ∵反比例函數(shù)y2=(k≠0)的圖象過A點, ∴k=﹣3, ∴反比例函數(shù)解析式為y2=﹣, ∵反比例函數(shù)y2=﹣的圖象過B(,m), ∴m=﹣3,解得m=﹣2, ∴B點坐標(biāo)為(,﹣2), 設(shè)直線AB解析式為y=nx+b,把A、B兩點坐標(biāo)代入可得,解得, ∴直線AB的解析式為y=﹣x﹣1, 令x=1,可得y=﹣1, ∴D點坐標(biāo)為(0,﹣1); (2)由(1)可得AE=1, ∵M(jìn)A=2A
50、C, ∴=, 如圖2,過M作MF⊥x軸于點F,則△CAE∽△CMF, ∴==, ∴MF=3,即M點的縱坐標(biāo)為3, 代入直線AB解析式可得3=﹣x﹣1,解得x=﹣6, ∴M點坐標(biāo)為(﹣6,3), ∴S△MOB=OD?(xB﹣xM)=×1×(+6)=, 即△MOB的面積為. 【點評】本題主要考查函數(shù)的交點問題,掌握函數(shù)的交點坐標(biāo)滿足每一個函數(shù)解析式是解題的關(guān)鍵,在求△MOB的面積時注意坐標(biāo)的靈活運用. 18.(xx?重慶校級二模)已知直線y=kx+b與x軸、y軸分別交于A、B兩點,與反比例函數(shù)交于一象限內(nèi)的P(,n),Q(4,m)兩點,且tan∠BOP=: (1)求
51、反比例函數(shù)和直線的函數(shù)表達(dá)式; (2)求△OPQ的面積. 【分析】(1)過P作PC⊥y軸于C,由P(,n),得到OC=n,PC=,根據(jù)三角函數(shù)的定義得到P(,8),于是得到反比例函數(shù)的解析式為y=,Q(4,1),解方程組即可得到直線的函數(shù)表達(dá)式為y=﹣2x+9; (2)過Q作OD⊥y軸于D,于是得到S△POQ=S四邊形PCDQ=. 【解答】解:(1)過P作PC⊥y軸于C, ∵P(,n), ∴OC=n,PC=, ∵tan∠BOP=, ∴n=8, ∴P(,8), 設(shè)反比例函數(shù)的解析式為y=, ∴a=4, ∴反比例函數(shù)的解析式為y=, ∴Q(4,1), 把P(,8),
52、Q(4,1)代入y=kx+b中得, ∴, ∴直線的函數(shù)表達(dá)式為y=﹣2x+9; (2)過Q作OD⊥y軸于D, 則S△POQ=S四邊形PCDQ=(+4)×(8﹣1)=. 【點評】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)圖象上點的坐標(biāo)特征,利用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,正切函數(shù)的定義,難度適中,利用數(shù)形結(jié)合是解題的關(guān)鍵. 19.(xx?重慶校級三模)如圖,已知一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,與x軸、y軸交于點C、D兩點,點B的橫坐標(biāo)為1,OC=OD,點P 在反比例函數(shù)圖象上且到x軸、y軸距離相等. (1
53、)求一次函數(shù)的解析式; (2)求△APB的面積. 【分析】(1)過點B作BE⊥OD,根據(jù)反比例函數(shù)求得點B的坐標(biāo),再根據(jù)△BDE∽△CDO求得點C、D的坐標(biāo),最后利用C、D兩點的坐標(biāo)求得一次函數(shù)解析式; (2)過點P作y軸的平行線,將△ABP分割成兩部分,根據(jù)解方程組求得交點A的坐標(biāo),再結(jié)合一次函數(shù)求得PF的長,最后計算△APB的面積. 【解答】解:(1)過點B作BE⊥OD,垂足為E,則 由BE∥CO,可得△BDE∽△CDO ∵OC=OD ∴BE=DE 又∵點B的橫坐標(biāo)為1,且B在反比例函數(shù)的圖象上 ∴B(1,﹣4),即BE=1,OE=4 ∴OD=4﹣1=3=OC,
54、即C(﹣3,0),D(0,﹣3) 將C、D的坐標(biāo)代入一次函數(shù)y=kx+b(k≠0),可得 ,解得 ∴一次函數(shù)的解析式為y=﹣x﹣3 (2)過點P作y軸的平行線,交直線AB于點F,則S△APB=S△APF+S△PFB ∵點P在反比例函數(shù)的圖象上,且到x軸、y軸距離相等 ∴P(﹣2,2) 在y=﹣x﹣3中,當(dāng)x=﹣2時,y=﹣1,即F(﹣2,﹣1) ∴PF=2﹣(﹣1)=3 解方程組,可得, ∴A(﹣4,1) ∴△APF中PF邊上的高為2,△BPF中PF邊上的高為3 ∴S△APB=S△APF+S△PFB=×3×2+×3×3=3+4.5=7.5 【點評】本題主要考查
55、了反比例函數(shù)與一次函數(shù)的交點問題,需要掌握根據(jù)待定系數(shù)法求一次函數(shù)解析式的方法以及相似三角形的運用.解答此類試題時注意:①求一次函數(shù)解析式時需要知道圖象上兩個點的坐標(biāo);②當(dāng)三角形的邊與坐標(biāo)系不平行或不垂直時,可以運用割補(bǔ)法求三角形的面積. 20.(xx?重慶校級三模)如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于B、A兩點,與反比例函數(shù)的圖象交于點C,連接CO,過C作CD⊥x軸于D,已知tan∠ABO=,OB=4,OD=2. (1)求直線AB和反比例函數(shù)的解析式; (2)在x軸上有一點E,使△CDE與△COB的面積相等,求點E的坐標(biāo). 【分析】(1)根據(jù)解直角三角形求
56、得點A、點B以及點C的坐標(biāo),利用A、B兩點的坐標(biāo)求得一次函數(shù)解析式,利用點C的坐標(biāo)求得反比例函數(shù)解析式; (2)根據(jù)△CDE與△COB的面積相等,求得DE的長,即可得出點E的坐標(biāo). 【解答】解:(1)∵OB=4,OD=2 ∴DB=2+4=6 ∵CD⊥x軸,tan∠ABO= ∴OA=2,CD=3 ∴A(0,2),B(4,0),C(﹣2,3) 設(shè)直線AB解析式為y=kx+b,則 ,解得 ∴直線AB解析式為y=﹣x+2 設(shè)反比例函數(shù)解析式為y=,則 將C(﹣2,3)代入,得m=﹣2×3=﹣6 ∴反比例函數(shù)解析式為y=﹣; (2)∵△CDE與△COB的面積相等 ∴×CD
57、×DE=×CD×OB ∴DE=OB=4 ∴點E的坐標(biāo)為(﹣6,0)或(2,0). 【點評】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,需要掌握根據(jù)待定系數(shù)法求兩個函數(shù)解析式的方法.解答此類試題時注意:求一次函數(shù)解析式需要圖象上兩個點的坐標(biāo),而求反比例函數(shù)解析式需要圖象上一個點的坐標(biāo)即可. 21.(xx?重慶校級三模)如圖,在平面直角坐標(biāo)系中,點A是反比例函數(shù)y=(k≠0)圖象上一點,AB⊥x軸于B點,一次函數(shù)y=ax+b(a≠0)的圖象交y軸于D(0,﹣2),交x軸于C點,并與反比例函數(shù)的圖象交于A,E兩點,連接OA,若△AOD的面積為4,且點C為OB中點. (1)分別求
58、雙曲線及直線AE的解析式; (2)若點Q在雙曲線上,且S△QAB=4S△BAC,求點Q的坐標(biāo). 【分析】(1)先根據(jù)點D的坐標(biāo)和△AOD的面積,求得點C的坐標(biāo),再結(jié)合點C為OB中點,求得點A的坐標(biāo),最后運用待定系數(shù)法求得反比例函數(shù)和一次函數(shù)的解析式; (2)先設(shè)Q的坐標(biāo)為(t,),根據(jù)條件S△QAB=4S△BAC求得t的值,進(jìn)而得到點Q的坐標(biāo). 【解答】解:(1)∵D(0,﹣2),△AOD的面積為4, ∴?2?OB=4, ∴OB=4, ∵C為OB的中點, ∴OC=BC=2,C(2,0) 又∵∠COD=90° ∴△OCD為等腰直角三角形, ∴∠OCD=∠ACB=45°,
59、 又∵AB⊥x軸于B點, ∴△ACB為等腰直角三角形, ∴AB=BC=2, ∴A點坐標(biāo)為(4,2), 把A(4,2)代入y=,得k=4×2=8, 即反比例函數(shù)解析式為y=, 將C(2,0)和D(0,﹣2)代入一次函數(shù)y=ax+b,可得 ,解得, ∴直線AE解析式為:y=x﹣2; (2)設(shè)Q的坐標(biāo)為(t,), ∵S△BAC=×2×2=2, ∴S△QAB=4S△BAC=8, 即?2?|t﹣4|=8, 解得t=12或﹣4, 在y=中,當(dāng)x=12時,y=;當(dāng)x=﹣4時,y=﹣2, ∴Q點的坐標(biāo)為(12,)或(﹣4,﹣2). 【點評】本題主要考查了反比例函數(shù)與一
60、次函數(shù)的交點問題,需要掌握根據(jù)待定系數(shù)法求函數(shù)解析式的方法.解答此類試題的依據(jù)是:①求一次函數(shù)解析式需要知道直線上兩點的坐標(biāo);②根據(jù)三角形的面積及一邊的長,可以求得該邊上的高. 22.(xx?重慶校級模擬)如圖,已知一次函數(shù)y=k1x+b的圖象分別x軸,y軸交于A、B兩點,且與反比例函數(shù)y=交于C、E兩點,點C在第二象限,過點C作CD⊥x軸于點D,OD=1,OE=,cos∠AOE= (1)求反比例函數(shù)與一次函數(shù)的解析式; (2)求△OCE的面積. 【分析】(1)首先過點E作EF⊥x軸,由OE=,cos∠AOE=,可求得點E的坐標(biāo),然后利用待定系數(shù)法即可求得反比例函數(shù)的解析式,
61、進(jìn)而求得C的坐標(biāo),然后利用待定系數(shù)法即可求得一次函數(shù)的解析式; (2)由一次函數(shù)解析式求得B的坐標(biāo),然后根據(jù)△OCE的面積等于△BOC和△BOE的和即可求得. 【解答】解:(1)過點E作EF⊥x軸, ∵在Rt△EOF中,cos∠AOE==, ∵OE=, ∴OF=3, ∴EF===1, ∴E(3,﹣1), ∴k2=3×(﹣1)=﹣3, ∴反比例函數(shù)為y=﹣; ∵OD=1, ∴C的橫坐標(biāo)為﹣1, 代入y=﹣得,y=3, ∴C(﹣1,3), 把C(﹣1,3)和E(3,﹣1)代入y=k1x+b得, 解得 則一次函數(shù)的解析式為y=﹣x+2; (2)由一次函數(shù)的解析式為y
62、=﹣x+2可知B(0,2), ∴S△COE=×2×1+×2×3=4. 【點評】此題考查了反比例函數(shù)與一次函數(shù)的交點問題.此題難度適中,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用. 23.(xx?重慶校級二模)如圖,一次函數(shù)y=x+2的圖象與x軸交于點B,與反比例函數(shù)y=(k≠0)的圖象的一個交點為A(2,m). (1)求反比例函數(shù)的表達(dá)式; (2)過點A作AC⊥x軸,垂足為點C,設(shè)點D在反比例函數(shù)圖象上,且△DBC的面積等于6,請求出點D的坐標(biāo); (3)請直接寫出不等式x+2<成立的x取值范圍. 【分析】(1)先將點A(2,m)一次函數(shù)y=x+2,求得m,在把A(2,3)
63、代入y=(k≠0)中,即可得到結(jié)論; (2)可求得點B的坐標(biāo),由S△DBC=6,列方程即可得到結(jié)論; (3)解方程組即可得到結(jié)論. 【解答】解:(1)∵A(2,m)在一次函數(shù)y=x+2的圖象上, ∴m=×2+2=3, ∴A(2,3), ∵一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象的一個交點為A(2,3), ∴k=6, ∴反比例函數(shù)的表達(dá)式為y=; (2)設(shè)D(m,), 對于一次函數(shù)y=x+2,令y=0,則x+2=0, ∴x=﹣4, ∴B(﹣4,0), ∵AC⊥x軸, ∴C(2,0), ∴BC=6, ∵△DBC的面積等于6, ∴×6×||=6,
64、 ∴m=±3, ∴D(3,2),或(﹣3,﹣2); (3)解得,, ∴一次函數(shù)y=x+2的圖象與反比例函數(shù)y=(k≠0)的圖象交點為(﹣6,1),(2,3), ∴不等式x+2<成立的x取值范圍是x<﹣6,或0<x<2. 【點評】本題考查了一次函數(shù)和反比例函數(shù)的交點問題,利用待定系數(shù)法求解析式是解此題的關(guān)鍵. 24.(xx春?重慶校級期末)如圖,已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=k2x+b的圖象交于A、B兩點,A(2,n),B(﹣1,﹣4). (1)求反比例函數(shù)和一次函數(shù)的解析式; (2)求△AOB的面積; (3)觀察圖象,直接寫出不等式y(tǒng)1>y2的解集
65、. 【分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特點可得k1=(﹣1)×(﹣4)=4,進(jìn)而可得反比例函數(shù)解析式,然后可得到A點坐標(biāo),再把A、B兩點坐標(biāo)代入一次函數(shù)y2=k2x+b可得關(guān)于k、b的方程組,解方程組可得k、b的值,進(jìn)而可得一次函數(shù)解析式; (2)利用一次函數(shù)解析式計算出點C的坐標(biāo),進(jìn)而可得OC的長,然后再計算出△BOC和△AOC的面積,求和即可得到△AOB的面積; (3)利用函數(shù)圖象可直接寫出答案. 【解答】解:(1)∵y1=的圖象過B(﹣1,﹣4), ∴k1=(﹣1)×(﹣4)=4, ∴反比例函數(shù)解析式為y1=, ∵A(2,n)在反比例函數(shù)y1=的圖象上, ∴2
66、n=4, ∴n=2, ∴A(2,2) ∵一次函數(shù)y2=k2x+b的圖象過A、B兩點, ∴, 解得:, ∴一次函數(shù)的解析式為y2=2x﹣2; (2)設(shè)一次函數(shù)y2=2x﹣2與y軸交于點C, 當(dāng)x=0時,y2=﹣2, ∴CO=2, ∴△AOB的面積為:×1+2×4=5; (3)當(dāng)y1>y2時,0<x<2或x<﹣1. 【點評】此題主要考查了反比例函數(shù)與一次函數(shù)交點問題,關(guān)鍵是掌握凡是函數(shù)圖象經(jīng)過的點必能滿足解析式. 25.(xx春?重慶校級期末)如圖,已知反比例函數(shù)y=(k<0)的圖象經(jīng)過點A(﹣2,m),過點A作AB⊥x軸于點B,且△AOB的面積為2. (1)求k和m的值; (2)若一次函數(shù)y=ax+1的圖象經(jīng)過點A,并且與x軸的交點為點C,試求出△ABC的面積. 【分析】(1)根據(jù)題意,利用點A的橫坐標(biāo)和△AOB的面積,可得出k的值以及得出m的值; (2)將A點的坐標(biāo)代入直線方程中,可得出a的值,即得直線方程,令y=0,可得出C的坐標(biāo),即可得出BC的長,又△ABC的底邊BC對應(yīng)的高為點A的縱坐標(biāo),利用三角形的面積公式即可得出△ABC
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案