江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)

上傳人:xt****7 文檔編號:106070597 上傳時間:2022-06-13 格式:DOC 頁數(shù):12 大小:418KB
收藏 版權(quán)申訴 舉報 下載
江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)_第1頁
第1頁 / 共12頁
江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)_第2頁
第2頁 / 共12頁
江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能—“立體幾何”專題提能課講義(含解析)(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、江蘇省2022高考數(shù)學二輪復習 專題二 立體幾何 2.3 專題提能“立體幾何”專題提能課講義(含解析)失誤1因不會構(gòu)造適當?shù)膸缀误w而解題受阻答案點評學生對于本題往往不知道球心的位置而導致不會解答把該三棱錐補成正方體來確定球心的位置是求解本題的關(guān)鍵之處,正方體的體對角線就是外接球直徑.失誤2因不會利用側(cè)面展開圖而解題受阻例2如圖所示,在長方體ABCDA1B1C1D1中,AB4 cm,AD2 cm,AA13 cm,則在長方體表面上連結(jié)A,C1兩點的所有曲線長度最小值為_cm.解析將長方體的面分別展開平鋪,當四邊形AA1D1D和四邊形DD1C1C在同一平面內(nèi)時,最小距離為四邊形AA1C1C的對角線,

2、長度是;當四邊形AA1D1D和四邊形A1B1C1D1在同一平面內(nèi)時,最小距離為四邊形AB1C1D的對角線,長度是;四邊形ABCD和四邊形CDD1C1在同一平面內(nèi)時,最小距離為四邊形ABC1D1的對角線,長度是,所以最小距離是 cm.答案點評該題考查的是幾何體的表面距離的最值問題,結(jié)合平面內(nèi)連結(jié)兩點的直線段是最短的,所以將長方體的側(cè)面沿著不同的方向展開,使得兩個點落在同一平面內(nèi),利用勾股定理來求解,選出最小的那個,容易出錯的地方在于考慮不全面,沿著一個方向展開求得結(jié)果,從而出現(xiàn)錯誤,所以一定要注意應該有三條路徑.失誤3因定理表述不嚴謹而導致丟分例3如圖,在長方體ABCDA1B1C1D1中,求證:

3、平面BC1D平面AB1D1.證明BDB1D1,BD平面AB1D1,B1D1平面AB1D1.BD平面AB1D1,同理BC1平面AB1D1.又BDBC1B,BD平面BC1D,BC1平面BC1D,平面BC1D平面AB1D1.點評在證明面面平行時,有的同學喜歡跳步,直接由線線平行得到面面平行,少了由線線平行到線面平行的過程,在考試中是要被扣分的立體幾何邏輯性非常強,證明時要嚴格按照定理的要求來進行書寫,切不可漏條件策略1割補法:求不規(guī)則幾何體的體積 例1如圖所示,在多面體ABCDEF中,已知ABCD是邊長為1的正方形,且ADE,BCF均為正三角形,EFAB,EF2,則該多面體的體積為_解析法一:如圖所

4、示,分別過A,B作EF的垂線AG,BH,垂足分別為G,H.連結(jié)DG,CH,容易求得EGHF.所以AGGDBHHC,SAGDSBHC1,VVEADGVFBHCVAGDBHC21.法二:如圖所示,將該多面體補成一個斜三棱柱ADEMNF,點F到平面AMND的距離為,則VVADEMNFVFMNCB1211.答案點評本題中所用的兩種方法實際上就是求不規(guī)則幾何體體積的兩種基本方法法一是對不規(guī)則幾何體進行分割法二則是在原不規(guī)則幾何體的基礎(chǔ)上補上一個幾何體,使之成為規(guī)則幾何體.策略2等積法:求三棱錐的體積例2如圖,在正三棱柱ABCA1B1C1中,已知ABAA13,點P在棱CC1上,則三棱錐PABA1的體積為_

5、解析三棱錐PABA1的體積為V三棱錐PABA1V三棱錐CABA1V三棱錐A1ABCSABCAA1323.答案點評等積法包括等面積法和等體積法利用等積法的前提是平面圖形(或立體圖形)的面積(或體積)通過已知條件可以得到,利用等積法可以求解幾何圖形的高, 特別是在求三角形的高(點到線的距離)或三棱錐的高(點到面的距離)時,通常采用此法解決問題1函數(shù)與方程思想解決立體幾何中的最值問題例1如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O.D,E,F(xiàn)為圓O上的點,DBC,ECA,F(xiàn)AB分別是以BC,CA,AB為底邊的等腰三角形沿虛線剪開后,分別以BC,CA,AB為折痕折起D

6、BC,ECA,F(xiàn)AB,使得D,E,F(xiàn)重合,得到三棱錐當ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_解析法一:由題意可知,折起后所得三棱錐為正三棱錐,當ABC的邊長變化時,設(shè)ABC的邊長為a(a0)cm,則ABC的面積為a2,DBC的高為5a,則正三棱錐的高為,25a0,0a0,即x42x30,得0x2,則當x時,f(x)f(2)80,V4.所求三棱錐的體積的最大值為4.答案4點評處理此類問題的關(guān)鍵是結(jié)合圖形條件建立適當函數(shù),轉(zhuǎn)化為求函數(shù)的最值問題2高維與低維的轉(zhuǎn)化思想解決幾何體的展開問題例2如圖,已知正三棱柱ABCA1B1C1的底面邊長為2 cm,高為5 cm,一質(zhì)點自A點出

7、發(fā),沿著三棱柱的側(cè)面繞行兩周到達A1點的最短路線的長為_cm.解析將三棱柱沿側(cè)棱AA1展開得如圖所示(兩周)因為正三棱柱底面邊長為2 cm,高為5 cm,所以AA15 cm,AA12 cm,所以A1A13,即最短路線為13 cm.答案13點評將空間幾何體中的距離之和的最值問題通過側(cè)面展開圖的運用轉(zhuǎn)化為平面幾何的最值,這正是降維轉(zhuǎn)化思想的運用線面平行問題中的常見轉(zhuǎn)化方法典例如圖,在直三棱柱ABCA1B1C1中,ACBC,CC14,M是棱CC1上的一點(1) 求證:BCAM;(2) 若N是AB的中點,且CN平面AB1M,求CM的長解(1)證明:因為ABCA1B1C1是直三棱柱,所以CC1平面ABC

8、.因為BC平面ABC,所以CC1BC.因為ACBC,CC1ACC,CC1平面ACC1A1,AC平面ACC1A1,所以BC平面ACC1A1.因為AM平面ACC1A1,所以BCAM.(2)法一:如圖,取AB1的中點P,連結(jié)NP,PM.因為N是AB的中點,所以NPBB1.因為CMBB1,所以NPCM,所以NP與CM共面因為CN平面AB1M,平面CNPM平面AB1MMP,所以CNMP.所以四邊形CNPM為平行四邊形,所以CMNPBB1CC12.法二:如圖,設(shè)NC與CC1確定的平面交AB1于點P,連結(jié)NP,PM.因為CN平面AB1M,CN平面CNPM,平面AB1M平面CNPMPM,所以CNMP.因為BB

9、1CM,BB1平面CNPM,CM平面CNPM,所以BB1平面CNPM.又BB1平面ABB1,平面ABB1平面CNPMNP,所以BB1NP,所以CMNP,所以四邊形CNPM為平行四邊形因為N是AB的中點,所以CMNPBB1CC12.法三:如圖,取BB1的中點Q,連結(jié)NQ,CQ.因為N是AB的中點,所以NQAB1.因為NQ平面AB1M,AB1平面AB1M,所以NQ平面AB1M.因為CN平面AB1M,NQCNN,NQ平面NQC,CN平面NQC,所以平面NQC平面AB1M.因為平面BCC1B1平面NQCQC,平面BCC1B1平面AB1MMB1,所以CQMB1.因為BB1CC1,所以四邊形CQB1M是平

10、行四邊形,所以CMB1QBB1CC12.法四:如圖,分別延長BC,B1M,設(shè)交點為S,連結(jié)AS.因為CN平面AB1M,CN平面ABS,平面ABS平面AB1MAS,所以CNAS.由于ANNB,所以BCCS.又因為CMBB1,可得SMMB1,所以CMBB1CC12.點評線面平行無論是判定定理還是性質(zhì)定理都是需要轉(zhuǎn)化為線線平行常見的方式有構(gòu)造三角形轉(zhuǎn)化為線線平行,構(gòu)造平行四邊形轉(zhuǎn)化為對邊平行,構(gòu)造面面平行再利用面面平行的性質(zhì)定理進行證明課時達標訓練A組易錯清零練1設(shè)l,m表示直線,m是平面內(nèi)的任意一條直線則“l(fā)m”是“l(fā)”成立的_條件(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中選填

11、一個)解析:由lm,m,可得l,l或l與相交,推不出l;由l,m,結(jié)合線面垂直的定義可得lm.故“l(fā)m”是“l(fā)”成立的必要不充分條件答案:必要不充分2在長方體ABCDA1B1C1D1中,ABADa,AA12,四面體ACB1D1的體積為6,則a_.解析:如圖,VACB1D1VABCDA1B1C1D1VAA1B1D1VB1ABCVD1ADCVCB1C1D12a2a2a26,所以a3.答案:33設(shè)a,b是兩條不同的直線,是兩個不同的平面,則下列四個命題:若ab,a,則b;若a,則a;若a,a,則;若ab,a,b,則.其中正確命題的序號是_解析:中b可能在平面內(nèi);中a可能在平面內(nèi);中因為a,a,所以內(nèi)

12、必存在一條直線b與a平行,從而得到b,所以,故正確;因為ab,a,所以b或b,故內(nèi)必有一條直線c與b平行,又b,所以c,故,所以正確答案:4.如圖,在三棱柱ABCA1B1C1中,側(cè)棱AA1平面AB1C1,AA11,底面ABC是邊長為2的正三角形,則此三棱柱的體積為_解析:因為AA1平面AB1C1,AB1平面AB1C1,所以AA1AB1,又知AA11,A1B12,所以AB1,同理可得AC1,又知在AB1C1中,B1C12,所以AB1C1的邊B1C1上的高為h,其面積S2,于是三棱錐AA1B1C1的體積VAA1B1C1VA1AB1C1SAB1C1AA1,進而可得此三棱柱ABCA1B1C1的體積V3

13、VAA1B1C13.答案:B組方法技巧練1設(shè)P,A,B,C是球O表面上的四個點,PA,PB,PC兩兩垂直,且PAPB1,PC2,則球O的表面積是_解析:設(shè)球O的半徑為R.由PA,PB,PC兩兩垂直,所以外接球的直徑是以PA,PB,PC為棱的長方體的體對角線,即4R2PA2PB2PC21146,故S球表面積4R26.答案:62在空間中,用a,b,c表示三條不同的直線,表示平面,給出下列四個命題:若ab,bc,則ac;若ab,bc,則ac;若a,b,則ab;若a,b,則ab.其中真命題的序號為_解析:根據(jù)公理知平行于同一條直線的兩條直線互相平行,正確;根據(jù)線面垂直性質(zhì)定理知“同垂直一個平面的兩條直

14、線平行”,知正確;均不恒成立故選.答案:3.如圖,在正三棱柱ABCA1B1C1中,若各條棱長均為2,且M為A1C1的中點,則三棱錐MAB1C的體積是_解析:法一:在正三棱柱ABCA1B1C1中,AA1平面A1B1C1,從而AA1B1M.又因為B1M是正三角形A1B1C1的中線,所以B1MA1C1,所以B1M平面ACC1A1,則VMAB1CVB1ACMB1M22.法二:VMAB1CVABCA1B1C1VAA1B1MVCC1B1MVB1ABC2222.答案:4.如圖,平行四邊形ABCD和矩形ACEF所在的平面互相垂直,AB1,AD2,ADC60,AF.(1)求證:ACBF;(2)求多面體ABCDE

15、F的體積解:(1)證明:AB1,AD2,ADC60,由余弦定理:AC2CD2AD22CDADcos 60142123,于是AD2CD2AC2,ACD90,ABCD,ACAB.又四邊形ACEF是矩形,F(xiàn)AAC,又AFABA,AC平面AFB,又BF平面AFB,ACBF.(2)令多面體ABCDEF的體積為V,VVDACEFVBACEF2VDACEF,又平面ABCD平面ACEF,DCAC,根據(jù)兩平面垂直的性質(zhì)定理:DC平面ACEF,DC為四棱錐DACEF的高,S矩形ACEF,VDACEF1,V2VDACEF,即多面體ABCDEF的體積為.5.如圖,四邊形ABCD是矩形,平面ABCD平面BCE,BEEC

16、.(1)求證:平面AEC平面ABE;(2)點F在BE上,若DE平面ACF,求 的值解:(1)證明:因為四邊形ABCD為矩形,所以ABBC.因為平面ABCD平面BCE,平面ABCD平面BCEBC,AB平面ABCD,所以AB平面BCE.因為EC平面BCE,所以ECAB.因為ECBE,AB平面ABE,BE平面ABE,ABBEB,所以EC平面ABE.因為EC平面AEC,所以平面AEC平面ABE.(2) 連結(jié)BD交AC于點O,連結(jié)OF.因為DE平面ACF,DE平面BDE,平面ACF平面BDEOF,所以DEOF.又因為矩形ABCD中,O為BD的中點,所以F為BE的中點,即.C組創(chuàng)新應用練1下列命題:若直線

17、l平行于平面內(nèi)的無數(shù)條直線,直線a在平面內(nèi),則la;若直線a在平面外,則a;若直線ab,直線b,則a;若直線ab,b,那么直線a就平行于平面內(nèi)的無數(shù)條直線其中真命題的個數(shù)為_解析:對于,直線l雖與平面內(nèi)的無數(shù)條直線平行,但l有可能在平面內(nèi),l不一定平行于a,是假命題;對于,直線a在平面外,包括兩種情況:a和a與相交,是假命題;對于,ab,直線b,則只能說明a和b無公共點,但a可能在平面內(nèi),a不一定平行于,是假命題;對于,ab,b,那么a或a,a與平面內(nèi)的無數(shù)條直線平行,是真命題. 答案:12.如圖,已知AB為圓O的直徑,C為圓上一動點,PA圓O所在的平面,且PAAB2,過點A作平面PB,分別交

18、PB,PC于E,F(xiàn),當三棱錐PAEF的體積最大時,tanBAC_.解析:PB平面AEF,AFPB.又ACBC,APBC,BC平面PAC,AFBC,AF平面PBC,AFE90.設(shè)BAC,在RtPAC中,AF,在RtPAB中,AEPE,EF,VPAEFAFEFPEAF,當AF1時,VPAEF取得最大值,此時AF1,cos ,sin ,tan .答案:3.如圖所示,等腰ABC的底邊AB6,高CD3,點E是線段BD上異于點B,D的動點,點F在BC邊上,且EFAB,現(xiàn)沿EF將BEF折起到PEF的位置,使PEAE,記BEx,V(x)表示四棱錐PACFE的體積,則V(x)的最大值為_解析:因為PEEF,PE

19、AE,EFAEE,所以PE平面ABC.因為CDAB,F(xiàn)EAB,所以EFCD,所以,即,所以EF,所以SABC639,SBEFxx2,所以V(x)xx(0x3)因為V(x),所以當x(0,6)時,V(x)0,V(x)單調(diào)遞增;當6x3時,V(x)0,V(x)單調(diào)遞減,因此當x6時,V(x)取得最大值12.答案:124.如圖所示,在RtABC中,AC6,BC3,ABC90,CD為ACB的平分線,點E在線段AC上,CE4.如圖所示,將BCD沿CD折起,使得平面BCD平面ACD,連結(jié)AB,設(shè)點F是AB的中點(1)求證:DE平面BCD;(2)若EF平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐

20、BDEG的體積解:(1)證明:在題圖中,因為AC6,BC3,ABC90,所以ACB60.因為CD為ACB的平分線,所以BCDACD30,所以CD2.又因為CE4,DCE30,所以DE2.則CD2DE2CE2,所以CDE90,即DECD.在題圖中,因為平面BCD平面ACD,平面BCD平面ACDCD,DE平面ACD,所以DE平面BCD.(2)在題圖中,因為EF平面BDG,EF平面ABC,平面ABC平面BDGBG,所以EFBG.因為點E在線段AC上,CE4,點F是AB的中點,所以AEEGCG2.過點B作BHCD交于點H.因為平面BCD平面ACD,BH平面BCD,所以BH平面ACD.由條件得BH.又S

21、DEGSACDACCDsin 30,所以三棱錐BDEG的體積為VSDEGBH.5.如圖,已知斜三棱柱ABCA1B1C1中,ABAC,D為BC的中點(1)若平面ABC平面BCC1B1,求證:ADDC1;(2)求證:A1B平面ADC1.證明:(1)因為ABAC,D為BC的中點,所以ADBC.因為平面ABC平面BCC1B1,平面ABC平面BCC1B1BC,AD平面ABC,所以AD平面BCC1B1.因為DC1平面BCC1B1,所以ADDC1.(2)如圖,連結(jié)A1C,交AC1于點O,連結(jié)OD,則O為A1C的中點因為D為BC的中點,所以O(shè)DA1B.因為OD平面ADC1,A1B平面ADC1,所以A1B平面A

22、DC1.6.現(xiàn)需要設(shè)計一個倉庫,它的上部是底面圓半徑為5 m的圓錐,下部是底面圓半徑為5 m的圓柱,且該倉庫的總高度為5 m經(jīng)過預算,制造該倉庫的圓錐側(cè)面、圓柱側(cè)面用料的單價分別為4百元/m2、1百元/m2.(1)記倉庫的側(cè)面總造價為y百元:設(shè)圓柱的高為x m,試將y表示為關(guān)于x的函數(shù)yf(x);設(shè)圓錐母線與其軸所在直線所成角為,試將y表示為關(guān)于的函數(shù)yg();(2)問當圓柱的高度為多少時,該倉庫的側(cè)面總造價最少?解:(1)由題可知,圓柱的高為x m,且x(0,5),則該倉庫的側(cè)面總造價y(25x)1410x20,x(0,5)由題可知,圓錐母線與軸所在直線所成角為,且,則該倉庫的側(cè)面總造價y1450,.(2) 由,令h(),則h(),由h()0得cos ,又,所以,當變化時,h(),h()的變化情況如表所示.h()0h()極小值所以當時,h()取得最小值,側(cè)面總造價y最小,此時圓柱的高度為55 m.當圓柱的高度為5 m時,該倉庫的側(cè)面總造價最少

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!