《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 二項(xiàng)式定理與數(shù)學(xué)歸納法(理)8.2 數(shù)學(xué)歸納法達(dá)標(biāo)訓(xùn)練(含解析)》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 二項(xiàng)式定理與數(shù)學(xué)歸納法(理)8.2 數(shù)學(xué)歸納法達(dá)標(biāo)訓(xùn)練(含解析)(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專(zhuān)題八 二項(xiàng)式定理與數(shù)學(xué)歸納法(理)8.2 數(shù)學(xué)歸納法達(dá)標(biāo)訓(xùn)練(含解析)1(2018南通三模)已知函數(shù)f0(x)(a0,bcad0)設(shè)fn(x)為fn1(x)的導(dǎo)數(shù),nN*.(1)求f1(x),f2(x);(2)猜想fn(x)的表達(dá)式,并證明你的結(jié)論解:(1)f1(x)f0(x),f2(x)f1(x).(2)猜想fn(x),nN*.證明:當(dāng)n1時(shí),由(1)知結(jié)論成立,假設(shè)當(dāng)nk(kN*且k1)時(shí)結(jié)論成立,即有fk(x).當(dāng)nk1時(shí),fk1(x)fk(x)(1)k1ak1(bcad)k!(axb)(k1).所以當(dāng)nk1時(shí)結(jié)論成立由得,對(duì)一切nN*結(jié)論都成立2(20
2、18鎮(zhèn)江模擬)證明:對(duì)一切正整數(shù)n,5n23n11都能被8整除證明:(1)當(dāng)n1時(shí),原式等于8,能被8整除;(2)假設(shè)當(dāng)nk(k1,kN*)時(shí),結(jié)論成立,即5k23k11能被8整除設(shè)5k23k118m,mN*,當(dāng)nk1時(shí),5k123k15(5k23k11)43k145(5k23k11)4(3k11),而當(dāng)k1,kN*時(shí),3k11顯然為偶數(shù),設(shè)為2t,tN*,故5k123k15(5k23k11)4(3k11)40m8t(m,tN*),也能被8整除,故當(dāng)nk1時(shí)結(jié)論也成立;由(1)(2)可知,對(duì)一切正整數(shù)n,5n23n11都能被8整除3已知Sn1(n2,nN*),求證:S2n1(n2,nN*)證明
3、:(1)當(dāng)n2時(shí),S2nS411,即n2時(shí)命題成立;(2)假設(shè)當(dāng)nk(k2,kN*)時(shí)命題成立,即S2k11,則當(dāng)nk1時(shí),S2k111111,故當(dāng)nk1時(shí),命題成立由(1)和(2)可知,對(duì)n2,nN*不等式S2n1都成立4(2018常州期末)記(x1)(n2且nN*)的展開(kāi)式中含x項(xiàng)的系數(shù)為Sn,含x2項(xiàng)的系數(shù)為T(mén)n.(1)求Sn;(2)若an2bnc,對(duì)n2,3,4成立,求實(shí)數(shù)a,b,c的值;(3)對(duì)(2)中的實(shí)數(shù)a,b,c,用數(shù)學(xué)歸納法證明:對(duì)任意n2且nN*,an2bnc都成立解:(1)因?yàn)?x1)(1x)(12x)(1nx)1(12n)xn!xn,所以Sn.(2)由題意及(1)可知,
4、又an2bnc,則解得a,b,c.(3)證明:當(dāng)n2時(shí),由(2)知等式成立假設(shè)當(dāng)nk(kN*,且k2)時(shí),等式成立,即k2k.當(dāng)nk1時(shí),由f(x)(x1)知Tk1SkTk,所以.又(k1)2(k1)上式,即等式(k1)2(k1)也成立綜上可得,對(duì)任意n2且nN*,都有an2bnc成立B組大題增分練1(2018南通、泰州一調(diào))用數(shù)學(xué)歸納法證明:當(dāng)xN*時(shí),cos xcos 2xcos 3xcos nx(xR,且x2k,kZ)證明:當(dāng)n1時(shí),等式右邊cos x等式左邊,等式成立假設(shè)當(dāng)nk時(shí)等式成立,即cos xcos 2xcos 3xcos kx.那么,當(dāng)nk1時(shí),有cos xcos 2xcos
5、 3xcos kxcos(k1)xcos(k1)xsin(k1)xcosxcos(k1)xsinx2sinxcos(k1)x2sinx,這就是說(shuō),當(dāng)nk1時(shí)等式也成立根據(jù)和可知,對(duì)任何nN*等式都成立2已知數(shù)列an共有3n(nN*)項(xiàng),記f(n)a1a2a3n.對(duì)任意的kN*,1k3n,都有ak0,1,且對(duì)于給定的正整數(shù)p (p2),f(n)是p的整數(shù)倍把滿(mǎn)足上述條件的數(shù)列an的個(gè)數(shù)記為T(mén)n.(1)當(dāng)p2時(shí),求T2的值;(2)當(dāng)p3時(shí),求證:Tn8n2(1)n解:(1)由題意,當(dāng)n2時(shí),數(shù)列an共有6項(xiàng)要使得f(2)是2的整數(shù)倍,則這6項(xiàng)中,只能有0項(xiàng)、2項(xiàng)、4項(xiàng)、6項(xiàng)取1,故T2CCCC25
6、32. (2)證明:由題意及(1)的分析可知,當(dāng)p3時(shí),TnCCCC .當(dāng)1kn,kN*時(shí),CCCCCCC2CCC2(CC)CCCC3(CC)CC, 于是Tn1CCCCCC3(CCCCCC)TnCTnC2Tn3(23nTn)38nTn. 下面用數(shù)學(xué)歸納法證明Tn8n2(1)n當(dāng)n1時(shí),T1CC2812(1)1,即n1時(shí),命題成立假設(shè)nk (k1,kN*) 時(shí),命題成立,即Tk8k2(1)k則當(dāng)nk1時(shí),Tk138kTk38k8k2(1)k98k8k2(1)k8k12(1)k1,即nk1時(shí),命題也成立于是當(dāng)nN*,有Tn8n2(1)n3(2018揚(yáng)州調(diào)研)在數(shù)列an中,ancos(nN*)(1)
7、試將an1表示為an的函數(shù)關(guān)系式;(2)若數(shù)列bn滿(mǎn)足bn1(nN*),猜想an與bn的大小關(guān)系,并證明你的結(jié)論解:(1)ancoscos221,an2a1,an1 ,又nN*,n12,an10,an1 .(2)當(dāng)n1時(shí),a1,b1121,a1b1;當(dāng)n2時(shí),a2,b21,a2b2;當(dāng)n3時(shí),a3,b31,a3b3.猜想:當(dāng)n3時(shí),anbn,下面用數(shù)學(xué)歸納法證明:當(dāng)n3時(shí),由上知,a3b3,結(jié)論成立假設(shè)nk,k3,nN*時(shí),akbk成立,即ak1,則當(dāng)nk1,ak1 ,bk11.要證ak1bk1,即證22,即證10,即證20,顯然成立nk1時(shí),結(jié)論也成立綜合可知:當(dāng)n3時(shí),anbn成立綜上可得
8、:當(dāng)n1時(shí),a1b1;當(dāng)n2時(shí),a2b2;當(dāng)n3,nN*時(shí),anbn.4(2018南通二調(diào))設(shè)n2,nN*.有序數(shù)組(a1,a2,an)經(jīng)m次變換后得到數(shù)組(bm,1,bm,2,bm,n),其中b1,iaiai1,bm,ibm1,ibm1,i1(i1,2,n),an1a1,bm1,n1bm1,1(m2)例如:有序數(shù)組(1,2,3)經(jīng)1次變換后得到數(shù)組(12,23,31),即(3,5,4);經(jīng)第2次變換后得到數(shù)組(8,9,7)(1)若aii(i1,2,n),求b3,5的值;(2)求證:bm,iijC,其中i1,2,n.(注:當(dāng)ijknt時(shí),kN*,t1,2,n,則aijat)解:(1)當(dāng)n2,3
9、,4時(shí),b3,5值不存在;當(dāng)n5時(shí),依題意,有序數(shù)組為(1,2,3,4,5)經(jīng)1次變換為:(3,5,7,9,6),經(jīng)2次變換為:(8,12,16,15,9),經(jīng)3次變換為:(20,28,31,24,17),所以b3,517;當(dāng)n6時(shí),同理得b3,528;當(dāng)n7時(shí),同理得b3,545;當(dāng)n8時(shí),nN*時(shí),依題意,有序數(shù)組為(1,2,3,4,5,6,7,8,n)經(jīng)1次變換為:(3,5,7,9,11,13,15,n1),經(jīng)2次變換為:(8,12,16,20,24,28,n4),經(jīng)3次變換為:(20,28,36,44,52,n12),所以b3,552. (2)證明:下面用數(shù)學(xué)歸納法證明對(duì)mN*,bm,iijC,其中i1,2,n.當(dāng)m1時(shí),b1,iaiai1ijC,其中i1,2,n,結(jié)論成立;假設(shè)mk(kN*)時(shí),bk,iijC,其中i1,2,n. 則mk1時(shí),bk1,ibk,ibk,i1ijCij1CijCijCaiCij(CC)aik1CaiCijCaik1CijC,所以結(jié)論對(duì)mk1時(shí)也成立由知,mN*,bm,iijC,其中i1,2,n.