江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)

上傳人:xt****7 文檔編號:106071110 上傳時(shí)間:2022-06-13 格式:DOC 頁數(shù):16 大小:185KB
收藏 版權(quán)申訴 舉報(bào) 下載
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)_第1頁
第1頁 / 共16頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)_第2頁
第2頁 / 共16頁
江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)_第3頁
第3頁 / 共16頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)》由會員分享,可在線閱讀,更多相關(guān)《江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法—直線與圓講義(含解析)(16頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、江蘇省2022高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 解析幾何 3.2 大題考法直線與圓講義(含解析)題型(一)直線與圓的位置關(guān)系 主要考查直線與圓的位置關(guān)系以及復(fù)雜背景下直線、圓的方程.點(diǎn)B代入x3y60,解得x0,所以C.所以BC所在直線方程為x7y20.(2)因?yàn)镽tABC斜邊中點(diǎn)為M(2,0),所以M為RtABC外接圓的圓心又AM2,從而RtABC外接圓的方程為(x2)2y28.設(shè)P(a,b),因?yàn)閯?dòng)圓P過點(diǎn)N,所以該圓的半徑r,圓方程為(xa)2(yb)2r2.由于P與M相交,則公共弦所在直線m的方程為(42a)x2bya2b2r240.因?yàn)楣蚕议L為4,M半徑為2,所以M(2,0)到m的距離d2

2、,即2,化簡得b23a24a,所以r .當(dāng)a0時(shí),r最小值為2,此時(shí)b0,圓的方程為x2y24.方法技巧解決有關(guān)直線與圓位置關(guān)系的問題的方法(1)直線與圓的方程求解通常用的待定系數(shù)法,由于直線方程和圓的方程均有不同形式,故要根據(jù)所給幾何條件靈活使用方程(2)對直線與直線的位置關(guān)系的相關(guān)問題要用好直線基本量之一斜率,要注意優(yōu)先考慮斜率不存在的情況(3)直線與圓的位置關(guān)系以及圓與圓的位置關(guān)系在處理時(shí)幾何法優(yōu)先,有時(shí)也需要用代數(shù)法即解方程組演練沖關(guān)已知以點(diǎn)C(tR,t0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為坐標(biāo)原點(diǎn)(1)求證:OAB的面積為定值;(2)設(shè)直線y2x4與圓C交于點(diǎn)

3、M,N,若OMON,求圓C的方程解:(1)證明:因?yàn)閳AC過原點(diǎn)O,所以O(shè)C2t2.設(shè)圓C的方程是(xt)22t2,令x0,得y10,y2;令y0,得x10,x22t,所以SOABOAOB|2t|4,即OAB的面積為定值(2)因?yàn)镺MON,CMCN,所以O(shè)C垂直平分線段MN.因?yàn)閗MN2,所以kOC.所以t,解得t2或t2.當(dāng)t2時(shí),圓心C的坐標(biāo)為(2,1),OC,此時(shí)C到直線y2x4的距離d.圓C與直線y2x4不相交,所以t2不符合題意,舍去所以圓C的方程為(x2)2(y1)25.題型(二)圓中的定點(diǎn)、定值問題主要考查動(dòng)圓過定點(diǎn)的問題其本質(zhì)是含參方程恒有解,定值問題是引入?yún)?shù),再利用其滿足的約

4、束條件消去參數(shù)得定值.典例感悟例2已知圓C:x2y29,點(diǎn)A(5,0),直線l:x2y0.(1)求與圓C相切,且與直線l垂直的直線方程;(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A)滿足:對于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo)解(1)設(shè)所求直線方程為y2xb,即2xyb0.因?yàn)橹本€與圓C相切,所以3,解得b3.所以所求直線方程為2xy30.(2)法一:假設(shè)存在這樣的點(diǎn)B(t,0)當(dāng)點(diǎn)P為圓C與x軸的左交點(diǎn)(3,0)時(shí),;當(dāng)點(diǎn)P為圓C與x軸的右交點(diǎn)(3,0)時(shí),.依題意,解得t或t5(舍去)下面證明點(diǎn)B對于圓C上任一點(diǎn)P,都有為一常數(shù)設(shè)P(x,y),則y29

5、x2,所以.從而為常數(shù)法二:假設(shè)存在這樣的點(diǎn)B(t,0),使得為常數(shù),則PB22PA2,所以(xt)2y22(x5)2y2,將y29x2代入,得x22xtt29x22(x210x259x2),即2(52t)x342t290對x3,3恒成立,所以解得或(舍去)故存在點(diǎn)B對于圓C上任一點(diǎn)P,都有為常數(shù).方法技巧關(guān)于解決圓中的定點(diǎn)、定值問題的方法(1)與圓有關(guān)的定點(diǎn)問題最終可化為含有參數(shù)的動(dòng)直線或動(dòng)圓過定點(diǎn)解這類問題關(guān)鍵是引入?yún)?shù)求出動(dòng)直線或動(dòng)圓的方程(2)與圓有關(guān)的定值問題,可以通過直接計(jì)算或證明,還可以通過特殊化,先猜出定值再給出證明演練沖關(guān)1已知圓C:(x3)2(y4)24,直線l1過定點(diǎn)A(

6、1,0)(1) 若l1與圓相切,求直線l1的方程;(2) 若l1與圓相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,又l1與l2:x2y20的交點(diǎn)為N,判斷AMAN是否為定值若是,則求出定值;若不是,請說明理由解:(1)若直線l1的斜率不存在,即直線l1的方程為x1,符合題意;若直線l1斜率存在,設(shè)直線l1的方程為yk(x1),即kxyk0.由題意知,圓心(3,4)到直線l1的距離等于半徑2,即2,解得k,則l1:3x4y30.所求直線l1的方程是x1或3x4y30.(2)直線與圓相交,斜率必定存在,且不為0,可設(shè)直線l1方程為kxyk0.由得N.又因?yàn)橹本€CM與l1垂直,故可得M.所以AMAN6,為定

7、值故AMAN是定值,且為6.2已知圓M的方程為x2(y2)21,直線l的方程為x2y0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA,PB,切點(diǎn)為A,B.(1)若APB60,求點(diǎn)P的坐標(biāo);(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD時(shí),求直線CD的方程;(3)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo)解:(1)設(shè)P(2m,m),因?yàn)锳PB60,AM1,所以MP2,所以(2m)2(m2)24,解得m0或m,故所求點(diǎn)P的坐標(biāo)為P(0,0)或P.(2)易知直線CD的斜率存在,可設(shè)直線CD的方程為y1k(x2),由題知圓心M到直線CD的距離為,所以,解得k1或k,故

8、所求直線CD的方程為xy30或x7y90.(3)證明:設(shè)P(2m,m),MP的中點(diǎn)Q,因?yàn)镻A是圓M的切線,所以經(jīng)過A,P,M三點(diǎn)的圓是以Q為圓心,以MQ為半徑的圓,故其方程為(xm)22m22,化簡得x2y22ym(2xy2)0,此式是關(guān)于m的恒等式,故解得或所以經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn)(0,2)或.題型(三)與直線、圓有關(guān)的最值或范圍問題主要考查與直線和圓有關(guān)的長度、面積的最值或有關(guān)參數(shù)的取值范圍問題. 典例感悟例3已知ABC的三個(gè)頂點(diǎn)A(1,0),B(1,0),C(3,2),其外接圓為圓H.(1)若直線l過點(diǎn)C,且被圓H截得的弦長為2,求直線l的方程;(2)對于線段BH上的任意一點(diǎn)

9、P,若在以C為圓心的圓上都存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),求圓C的半徑r的取值范圍解(1)線段AB的垂直平分線方程為x0,線段BC的垂直平分線方程為xy30.所以外接圓圓心H(0,3),半徑為.圓H的方程為x2(y3)210.設(shè)圓心H到直線l的距離為d,因?yàn)橹本€l被圓H截得的弦長為2,所以d3.當(dāng)直線l垂直于x軸時(shí),顯然符合題意,即x3為所求;當(dāng)直線l不垂直于x軸時(shí),設(shè)直線方程為y2k(x3),則3,解得k.所以直線l的方程為y2(x3),即4x3y60.綜上,直線l的方程為x3或4x3y60.(2) 直線BH的方程為3xy30,設(shè)P(m,n)(0m1),N(x,y)因?yàn)辄c(diǎn)M是

10、線段PN的中點(diǎn),所以M,又M,N都在半徑為r的圓C上,所以即因?yàn)樵撽P(guān)于x,y的方程組有解,即以(3,2)為圓心,r為半徑的圓與以(6m,4n)為圓心,2r為半徑的圓有公共點(diǎn),所以(2rr)2(36m)2(24n)2(r2r)2.又3mn30,所以r210m212m109r2對任意的m0,1成立而f(m)10m212m10在0,1上的值域?yàn)?,所以r2且109r2.又線段BH與圓C無公共點(diǎn),所以(m3)2(33m2)2r2對任意的m0,1成立,即r2.故圓C的半徑r的取值范圍為.方法技巧1隱形圓問題有些時(shí)候,在條件中沒有直接給出圓方面的信息,而是隱藏在題目中的,要通過分析和轉(zhuǎn)化,發(fā)現(xiàn)圓(或圓的方程

11、), 從而最終可以利用圓的知識來求解,我們稱這類問題為“隱形圓”問題2隱形圓的確定方法(1)利用圓的定義(到定點(diǎn)的距離等于定長的點(diǎn)的軌跡)確定隱形圓;(2)動(dòng)點(diǎn)P 對兩定點(diǎn)A,B張角是90(kPAkPB1)確定隱形圓;(3)兩定點(diǎn)A,B,動(dòng)點(diǎn)P滿足確定隱形圓;(4)兩定點(diǎn)A,B,動(dòng)點(diǎn)P滿足PA2PB2是定值確定隱形圓;(5)兩定點(diǎn)A,B,動(dòng)點(diǎn)P滿足PAPB(0,1)確定隱形圓(阿波羅尼斯圓);(6)由圓周角的性質(zhì)確定隱形圓3與圓有關(guān)的最值或范圍問題的求解策略與圓有關(guān)的最值或取值范圍問題的求解,要對問題條件進(jìn)行全方位的審視,特別是題中各個(gè)條件之間的相互關(guān)系及隱含條件的挖掘,要掌握解決問題常使用的

12、思想方法,如要善于利用數(shù)形結(jié)合思想,利用幾何知識,求最值或范圍,要善于利用轉(zhuǎn)化與化歸思想將最值或范圍轉(zhuǎn)化為函數(shù)關(guān)系求解演練沖關(guān)1.(2018蘇北四市期中)如圖,在平面直角坐標(biāo)系xOy中,已知圓C:x2y24x0及點(diǎn)A(1,0),B(1,2)(1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MNAB,求直線l的方程;(2)在圓C上是否存在點(diǎn)P,使得PA2PB212?若存在,求點(diǎn)P的個(gè)數(shù);若不存在,說明理由解:(1)因?yàn)閳AC的標(biāo)準(zhǔn)方程為(x2)2y24,所以圓心C(2,0),半徑為2.因?yàn)閘AB,A(1,0),B(1,2),所以直線l的斜率為1,設(shè)直線l的方程為xym0,則圓心C到直線l的距離為d

13、.因?yàn)镸NAB2,而CM2d22,所以42,解得m0或m4,故直線l的方程為xy0或xy40.(2)假設(shè)圓C上存在點(diǎn)P,設(shè)P(x,y),則(x2)2y24,PA2PB2(x1)2(y0)2(x1)2(y2)212,即x2y22y30,x2(y1)24,因?yàn)閨22|0.由(2)知,k0也滿足題意所以k的取值范圍是.4已知過點(diǎn)A(1,0)的動(dòng)直線l與圓C:x2(y3)24相交于P、Q兩點(diǎn),M是PQ中點(diǎn),l與直線m:x3y60相交于N.(1)求證:當(dāng)l與m垂直時(shí),l必過圓心C;(2)當(dāng)PQ2時(shí),求直線l的方程;(3)探索是否與直線l的傾斜角有關(guān),若無關(guān),請求出其值;若有關(guān),請說明理由解:(1)l與m垂直,且km,kl3,故直線l方程為y3(x1),即3xy30.圓心坐標(biāo)(0,3)滿足直線l方程,當(dāng)l與m垂直時(shí),l必過圓心C.(2)當(dāng)直線l與x軸垂直時(shí), 易知x1符合題意當(dāng)直線l與x軸不垂直時(shí), 設(shè)直線l的方程為yk(x1),即kxyk0,PQ2,CM1,則由CM1,得k, 直線l:4x3y40. 故直線l的方程為x1或4x3y40.(3)CMMN,().當(dāng)l與x軸垂直時(shí),易得N,則,又(1,3),5.當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為yk(x1),則由得N,則,5.綜上所述,與直線l的斜率無關(guān),且5.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!