《(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 中檔大題規(guī)范練(二)數(shù)列 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 中檔大題規(guī)范練(二)數(shù)列 文(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、(全國通用版)2022高考數(shù)學(xué)二輪復(fù)習(xí) 中檔大題規(guī)范練(二)數(shù)列 文
1.(2018·濰坊模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且1,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an·bn=1+2nan,求數(shù)列{bn}的前n項(xiàng)和Tn.
解 (1)由已知1,an,Sn成等差數(shù)列,得2an=1+Sn,①
當(dāng)n=1時(shí),2a1=1+S1=1+a1,∴a1=1.
當(dāng)n≥2時(shí),2an-1=1+Sn-1,②
①-②得2an-2an-1=an,
∴=2,
∴數(shù)列{an}是以1為首項(xiàng),2為公比的等比數(shù)列,
∴an=a1qn-1=1×2n-1=2n-1(
2、n∈N*).
(2)由an·bn=1+2nan,得bn=+2n,
∴Tn=b1+b2+…+bn
=+2++4+…++2n
=+(2+4+…+2n)
=+=n2+n+2-(n∈N*).
2.(2018·四川成都市第七中學(xué)三診)已知公差不為零的等差數(shù)列{an}中,a3=7,且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an·2n}的前n項(xiàng)和為Sn,求Sn.
解 (1)設(shè)等差數(shù)列{an} 的公差為d(d≠0),
則a3=a1+2d=7.
又∵a1,a4,a13成等比數(shù)列,
∴a=a1a13,即(a1+3d)2=a1(a1+12d),
整理
3、得2a1=3d
∵a1≠0,
由解得
∴an=3+2(n-1)=2n+1(n∈N*).
(2)由(1)得an·2n=(2n+1)·2n,
∴Sn=3×2+5×22+…+(2n-1)·2n-1+(2n+1)·2n,①
∴2Sn=3×22+5×23+…+(2n-1)·2n+(2n+1)·2n+1,②
①-②得
-Sn=6+23+24+…+2n+1-(2n+1)·2n+1
=2+22+23+24+…+2n+1-(2n+1)·2n+1
=-(2n+1)·2n+1
=-2+(1-2n)·2n+1.
∴Sn=2+(2n-1)·2n+1(n∈N*).
3.(2018·廈門質(zhì)檢)已知
4、等差數(shù)列{an}滿足(n+1)an=2n2+n+k,k∈R.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn.
解 (1)方法一 由(n+1)an=2n2+n+k,
令n=1,2,3,
得到a1=,a2=,a3=,
∵{an}是等差數(shù)列,∴2a2=a1+a3,
即=+,
解得k=-1.
由于(n+1)an=2n2+n-1=(2n-1)(n+1),
又∵n+1≠0,∴an=2n-1(n∈N*).
方法二 ∵{an}是等差數(shù)列,設(shè)公差為d,
則an=a1+d(n-1)=dn+(a1-d),
∴(n+1)an=(n+1)(dn+a1-d)
5、=dn2+a1n+a1-d,
∴dn2+a1n+a1-d=2n2+n+k對于?n∈N*均成立,
則解得k=-1,∴an=2n-1(n∈N*).
(2)由bn==
==1+
=1+=+1,
得Sn=b1+b2+b3+…+bn
=+1++1++1+…++1
=+n
=+n
=+n=(n∈N*).
4.(2018·安徽省江南十校模擬)數(shù)列{an}滿足a1+2a2+3a3+…+nan=2-.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,求{bn}的前n項(xiàng)和Tn.
解 (1)當(dāng)n=1時(shí),a1=2-=;
當(dāng)n≥2時(shí),由a1+2a2+3a3+…+nan=2-,①
a1+
6、2a2+3a3+…+(n-1)an-1=2-,②
①-②得nan=2-- =,
可得an=,
又∵當(dāng)n=1時(shí)也成立,∴an=(n∈N*).
(2)∵bn= =
=2,
∴Tn=2
=2=-(n∈N*).
5.(2018·宿州模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2.
(1)證明數(shù)列{an+2}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=n·an,求數(shù)列{bn}的前n項(xiàng)和Kn.
解 (1)由Tn=2Sn-n2,得a1=S1=T1=2S1-1,
解得a1=S1=1,
由S1+S2=2S2-4,解得a2=
7、4.
當(dāng)n≥2時(shí),Sn=Tn-Tn-1 =2Sn-n2-2Sn-1+(n-1)2,
即Sn=2Sn-1+2n-1,①
Sn+1=2Sn+2n+1,②
由②-①得an+1=2an+2,
∴an+1+2=2(an+2),
又a2+2=2(a1+2),
∴數(shù)列{an+2}是以a1+2=3為首項(xiàng),2為公比的等比數(shù)列,
∴an+2=3·2n-1,
即an=3·2n-1-2(n∈N*).
(2)∵bn=3n·2n-1-2n,
∴Kn=3(1·20+2·21+…+n·2n-1)-2(1+2+…+n)
=3(1·20+2·21+…+n·2n-1)-n2-n.
記Rn=1·20+2·21+…+n·2n-1,③
2Rn=1·21+2·22+…+(n-1)·2n-1+n·2n,④
由③-④,得
-Rn=20+21+22+…+2n-1-n·2n
=-n·2n =(1-n)·2n-1,
∴Rn=(n-1)·2n+1.
∴Kn=3(n-1)2n-n2-n+3(n∈N*).