《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時(shí) 專題6 數(shù)列 第47練 數(shù)列中的易錯(cuò)題 文(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專用)2020版高考數(shù)學(xué)一輪復(fù)習(xí) 加練半小時(shí) 專題6 數(shù)列 第47練 數(shù)列中的易錯(cuò)題 文(含解析)(6頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第47練 數(shù)列中的易錯(cuò)題1.函數(shù)f(x)對(duì)任意正整數(shù)a,b滿足條件f(ab)f(a)f(b),且f(1)2,的值是_.2.設(shè)等差數(shù)列an滿足3a85a15,且a10,Sn為其前n項(xiàng)和,則數(shù)列Sn的最大項(xiàng)為_.3.已知數(shù)列an為等差數(shù)列,若0的n的最大值為_.4.在各項(xiàng)都為正數(shù)的數(shù)列an中,首項(xiàng)a12,且點(diǎn)(a,a)(nN*,n2)在直線x9y0上,則數(shù)列an的前n項(xiàng)和Sn為_.5.已知數(shù)列bn為等比數(shù)列,且首項(xiàng)b11,公比q2,則數(shù)列b2n1的前10項(xiàng)的和為_.6.已知數(shù)列an的前n項(xiàng)和為Sn,且滿足Sn2an2,若數(shù)列bn滿足bn10log2an,則使數(shù)列bn的前n項(xiàng)和取最大值時(shí)的n的值為_
2、.7.已知數(shù)列an是公差d不為0的等差數(shù)列,且a1,a3,a7為等比數(shù)列bn的連續(xù)三項(xiàng),則的值為_.8.已知an的前n項(xiàng)和Snn24n1,則|a1|a2|a10|_.9.數(shù)列an的前n項(xiàng)和為Snn2,若bn(n10)an,則數(shù)列bn的最小項(xiàng)為_.10.定義:在數(shù)列an中,若滿足d(nN*,d為常數(shù)),稱an為“等差比數(shù)列”,已知在“等差比數(shù)列”an中,a1a21,a33,則_.11.在數(shù)列an中,a11,an1(nN*),則是這個(gè)數(shù)列的第_項(xiàng).12.設(shè)an是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足aaaa,S77,若為數(shù)列an中的項(xiàng),則所有的正整數(shù)m的取值集合為_.13.在數(shù)列an中,若a
3、12,且對(duì)任意正整數(shù)m,k,總有amkamak,則an的前n項(xiàng)和Sn_.14.已知各項(xiàng)均為正數(shù)的數(shù)列an滿足:n23n,則_.15.已知數(shù)列an為正項(xiàng)的遞增等比數(shù)列,a1a582,a2a481,記數(shù)列的前n項(xiàng)和為Tn,則使不等式20191成立的最大正整數(shù)n的值為_.16.設(shè)f(x)是函數(shù)f(x)的導(dǎo)數(shù),若f(x)是f(x)的導(dǎo)數(shù),若方程f(x)0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0)為函數(shù)yf(x)的“拐點(diǎn)”.已知:任何三次函數(shù)既有拐點(diǎn),又有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心.設(shè)f(x)x32x2x2,數(shù)列an的通項(xiàng)公式為ann1008,則f(ai)_.答案精析1.20182.S253.194.3n
4、15.6.9或107.8.679.第5項(xiàng)10.4201621解析由題意可得,3,1,則2,結(jié)合“等差比數(shù)列”的定義可知數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,則12(n1)2n1,據(jù)此有220171220161,220161,4201621.11.2018解析由已知得,所以是以1為首項(xiàng),d為公差的等差數(shù)列,所以1(n1),所以an,令an,解得n2018.12.2解析由aaaa,得2a15d0,由S77得a13d1,聯(lián)立解得a15,d2,所以an2n7,2n7,令b2m3,得到b62n7,所以為偶數(shù)且b1且b為奇數(shù),故b1或b1,進(jìn)而得到m1或m2,當(dāng)m1時(shí),n不為正整數(shù),舍去,故m2.13.n(
5、n1)解析遞推關(guān)系amkamak中,令k1可得,am1ama1am2,即am1am2恒成立,據(jù)此可知,該數(shù)列是一個(gè)首項(xiàng)a12,公差d2的等差數(shù)列,其前n項(xiàng)和為Snna1d2n2n(n1).14.2n26n解析由n23n,可得(n1)23(n1)(n2),兩式相減可得2n2(n2),當(dāng)n1時(shí),12314212,滿足2n2,所以2n2(nN*),則an(2n2)24(n1)2,故4n4,易知數(shù)列是首項(xiàng)為8,公差為4的等差數(shù)列,則2n26n.15.6解析數(shù)列an為正項(xiàng)的遞增等比數(shù)列,a1a582,a1a5a2a481,即解得則q3,an3n1,Tn3.20191,即20191,3n2019,此時(shí)最大正整數(shù)n的值為6.16.4038解析根據(jù)題意,三次函數(shù)f(x)x32x2x2,則f(x)x24x,則f(x)2x4,若f(x)2x40,則x2,又由f(x)x32x2x2,則f(2)2,即點(diǎn)(2,2)是三次函數(shù)f(x)x32x2x2的對(duì)稱中心,則有f(x)f(4x)4,數(shù)列an的通項(xiàng)公式為ann1008,為等差數(shù)列,則有a1a2019a2a20182a10104,則f(ai)f(a1)f(a2)f(a2018)f(a2019)f(a1)f(a2019)f(a2)f(a2018)f(a1009)f(a1011)f(a1010)4100924038.6