(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt

上傳人:tia****nde 文檔編號(hào):14278881 上傳時(shí)間:2020-07-15 格式:PPT 頁(yè)數(shù):29 大?。?3.47MB
收藏 版權(quán)申訴 舉報(bào) 下載
(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt_第1頁(yè)
第1頁(yè) / 共29頁(yè)
(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt_第2頁(yè)
第2頁(yè) / 共29頁(yè)
(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt_第3頁(yè)
第3頁(yè) / 共29頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(江蘇專(zhuān)用)2020版高考數(shù)學(xué)大一輪復(fù)習(xí) 第四章 三角函數(shù)、解三角形 第6講 正弦定理、余弦定理課件.ppt(29頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第6講正弦定理、余弦定理,考試要求1.正弦定理、余弦定理(B級(jí)要求);2.運(yùn)用定理解決解三角形問(wèn)題(B級(jí)要求).,知 識(shí) 梳 理,1.正弦定理、余弦定理 在ABC中,若角A,B,C所對(duì)的邊分別是a,b,c,R為ABC外接圓半徑,則,b2c22bccos A,c2a22cacos B,a2b22abcos C,2Rsin B,2Rsin C,sin Asin Bsin C,2.在ABC中,已知a、b和A時(shí),解的情況如下,3.三角形常用面積公式,1.思考辨析(在括號(hào)內(nèi)打“”或“”) (1)三角形中三邊之比等于相應(yīng)的三個(gè)內(nèi)角之比.() (2)在ABC中,若sin Asin B,則AB.() (3)在

2、ABC的六個(gè)元素中,已知任意三個(gè)元素可求其他元素.() (4)當(dāng)b2c2a20時(shí),三角形ABC為銳角三角形.(),診 斷 自 測(cè),(6)在三角形中,已知兩邊和一角就能求三角形的面積.(),答案(1)(2)(3)(4)(5)(6),2.在ABC中,a2,A30,C45,則ABC的面積SABC_.,考點(diǎn)一利用正弦定理、余弦定理解三角形 角度1化邊為角或化角為邊解三角形,【例11】 在ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知bc2acos B. (1)證明:A2B;,(1)證明由正弦定理得sin Bsin C2sin Acos B,故2sin Acos Bsin Bsin(AB)sin

3、 Bsin Acos Bcos Asin B, 于是sin Bsin(AB).又A,B(0,),故0AB,所以B(AB)或BAB, 因此A(舍去)或A2B,所以A2B.,因sin B0,得sin Ccos B.,角度2利用平面幾何圖形解三角形,(1)求cos B的值; (2)求CD的長(zhǎng).,所以cos Bcos(AACB)cos(AACB) sin Asin ACBcos AcosACB,在BCD中,由余弦定理得,,考點(diǎn)二與三角形面積有關(guān)的問(wèn)題,【例2】 (2019南通模擬)在ABC中,角A,B,C所對(duì)的邊分別為a,b,c,(abc)(abc)ab. (1)求角C的大??; (2)若c2acos

4、B,b2,求ABC的面積.,(2)法一因?yàn)閏2acos B,由正弦定理,得sin C2sin Acos B, 因?yàn)锳BC,所以sin Csin(AB), 所以sin(AB)2sin Acos B,即sin Acos Bcos Asin B0,即sin(AB)0,,考點(diǎn)三利用正弦、余弦定理判定三角形的形狀,【例3】 (1)設(shè)ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcos Cccos Basin A,則ABC的形狀為_(kāi). (2)若a2b2c2ab,且2cos Asin Bsin C,則ABC的形狀為_(kāi). 解析(1)由正弦定理得sin Bcos Csin Ccos Bsin2A, sin

5、(BC)sin2A, 即sin(A)sin2A,sin Asin2A. A(0,),sin A0,,(2)法一利用邊的關(guān)系來(lái)判斷:,即c2b2c2a2,所以a2b2,所以ab. 又a2b2c2ab. 2b2c2b2,所以b2c2, bc,abc. ABC為等邊三角形.,法二利用角的關(guān)系來(lái)判斷: ABC180,sin Csin(AB), 又2cos Asin Bsin C, 2cos Asin Bsin Acos Bcos Asin B,sin(AB)0, 又A與B均為ABC的內(nèi)角,所以AB. 又由a2b2c2ab,,又0C180,所以C60,ABC為等邊三角形. 答案(1)直角三角形(2)等邊

6、三角形,規(guī)律方法(1)判定三角形形狀的途徑:化邊為角,通過(guò)三角變換找出角之間的關(guān)系;化角為邊,通過(guò)代數(shù)變形找出邊之間的關(guān)系,正(余)弦定理是轉(zhuǎn)化的橋梁. (2)無(wú)論使用哪種方法,都不要隨意約掉公因式,要移項(xiàng)提取公因式,否則會(huì)有漏掉一種形狀的可能.注意挖掘隱含條件,重視角的范圍對(duì)三角函數(shù)值的限制.,(2)設(shè)ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c.若bc2a,3sin A5sin B,則ABC的形狀為_(kāi)三角形.,所以sin C0,所以cos B0, 即B為鈍角,所以ABC為鈍角三角形.,(2)由3sin A5sin B及正弦定理得3a5b,,從而ABC為鈍角三角形. 答案(1)鈍角(2)鈍角,

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話(huà):18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶(hù)上傳的文檔直接被用戶(hù)下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!