《(浙江專用)2019高考數(shù)學二輪復習 專題二 立體幾何 第2講 空間中的平行與垂直課件.ppt》由會員分享,可在線閱讀,更多相關《(浙江專用)2019高考數(shù)學二輪復習 專題二 立體幾何 第2講 空間中的平行與垂直課件.ppt(50頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講空間中的平行與垂直,專題二立體幾何,板塊三專題突破核心考點,,考情考向分析,1.以選擇題、填空題的形式考查,主要利用平面的基本性質(zhì)及線線、線面和面面平行和垂直的判定定理與性質(zhì)定理對命題的真假進行判斷,屬于基礎題. 2.以解答題的形式考查,主要是對線線、線面與面面平行和垂直關系的交匯綜合命題,且多以棱柱、棱錐、棱臺或其簡單組合體為載體進行考查,難度中檔,,,熱點分類突破,真題押題精練,內(nèi)容索引,熱點分類突破,,熱點一空間線面位置關系的判定,空間線面位置關系判斷的常用方法 (1)根據(jù)空間線面平行、垂直關系的判定定理和性質(zhì)定理逐項判斷來解決問題 (2)必要時可以借助空間幾何模型,如從長方體、四
2、面體等模型中觀察線面位置關系,并結合有關定理來進行判斷,例1(1)(2018寧波模擬)已知直線l,m與平面,,l,m,則下列命題中正確的是 A.若lm,則必有 B.若lm,則必有 C.若l,則必有 D.若,則必有m,,解析,答案,解析對于選項A,平面和平面還有可能相交,所以選項A錯誤; 對于選項B,平面和平面還有可能相交且不垂直或平行,所以選項B錯誤; 對于選項C,因為l,l,所以,所以選項C正確; 對于選項D,直線m可能和平面平行或相交,所以選項D錯誤.,(2)如圖,平面平面,l,A,C是內(nèi)不 同的兩點,B,D是內(nèi)不同的兩點,且A,B,C, D直線l,M,N分別是線段AB,CD的中點.下列判
3、 斷正確的是 A.當CD2AB時,M,N兩點不可能重合 B.M,N兩點可能重合,但此時直線AC與l不可能相交 C.當AB與CD相交,直線AC平行于l時,直線BD可以與l相交 D.當AB,CD是異面直線時,直線MN可能與l平行,,解析,答案,解析由于直線CD的兩個端點都可以動,所以M,N兩點可能重合,此時兩條直線AB,CD共面,由于兩條線段互相平分,所以四邊形ACBD是平行四邊形,因此ACBD,而BD,ACB,所以由線面平行的判定定理可得AC,又因為AC,l,所以由線面平行的性質(zhì)定理可得ACl,故選B.,解決空間點、線、面位置關系的組合判斷題,主要是根據(jù)平面的基本性質(zhì)、空間位置關系的各種情況,以
4、及空間線面垂直、平行關系的判定定理和性質(zhì)定理進行判斷,必要時可以利用正方體、長方體、棱錐等幾何模型輔助判斷,同時要注意平面幾何中的結論不能完全引用到立體幾何中.,,跟蹤演練1(1)(2018湖州、衢州、麗水質(zhì)檢)設l為直線,,是兩個不同的平面,下列命題中正確的是 A.若,l,則l B.若l,l,則 C.若l,l,則 D.若l,l,則,,解析,答案,解析A中,直線與平面可能相交、可能平行,也可能直線在平面內(nèi),故A錯誤; B中,兩平面可能平行,也可能相交,故B錯誤; C中,根據(jù)線面平行、線面垂直的性質(zhì)定理和面面垂直的判定定理可判斷出兩平面垂直,故C錯誤; D中,由線面垂直的性質(zhì)和面面平行的判定定理
5、可以判斷出兩平面平行,故D正確,故選D.,(2)若直線l1和l2是異面直線,l1在平面內(nèi),l2在平面內(nèi),l是平面與平面的交線,則下列命題正確的是 A.l與l1,l2都相交 B.l與l1,l2都不相交 C.l至少與l1,l2中的一條相交 D.l至多與l1,l2中的一條相交,,解析,答案,解析方法一如圖1,l1與l2是異面直線,l1與l平行,l2與l相交,故A,B不正確; 如圖2,l1與l2是異面直線,l1,l2都與l相交,故D不正確,故選C. 方法二因為l分別與l1,l2共面,故l與l1,l2要么都不相交,要么至少與l1,l2中的一條相交.若l與l1,l2都不相交,則ll1,ll2,從而l1l
6、2,與l1,l2是異面直線矛盾,故l至少與l1,l2中的一條相交,故選C.,,熱點二空間平行、垂直關系的證明,空間平行、垂直關系證明的主要思想是轉化,即通過判定定理、性質(zhì)定理將線線、線面、面面之間的平行、垂直關系相互轉化.,證明,例2(1)如圖,三棱柱ABCA1B1C1的各棱長均為2,AA1平面ABC,E,F(xiàn)分別為棱A1B1,BC的中點. 求證:直線BE平面A1FC1;,證明取A1C1的中點G, 連接EG,F(xiàn)G, 因為點E為A1B1的中點, 所以EGB1C1,因為F為BC的中點,,所以BFEG且BFEG. 所以四邊形BFGE是平行四邊形,所以BEFG, 又BE平面A1FC1,F(xiàn)G平面A1FC
7、1, 所以直線BE平面A1FC1.,解答,平面A1FC1與直線AB交于點M,指出點M的位置,說明理由,并求三棱錐BEFM的體積.,解M為棱AB的中點. 理由如下: 因為ACA1C1,AC平面A1FC1,A1C1平面A1FC1, 所以直線AC平面A1FC1, 又平面A1FC1平面ABCFM,所以ACFM. 又F為棱BC的中點,所以M為棱AB的中點.,證明,(2)如圖,在四棱錐PABCD中,底面ABCD是邊 長為a的菱形,PD平面ABCD,BAD60, PD2a,O為AC與BD的交點,E為棱PB上一點. 證明:平面EAC平面PBD;,證明因為PD平面ABCD,AC平面ABCD, 所以PDAC. 又
8、四邊形ABCD為菱形,所以ACBD, 又PDBDD,PD,BD平面PBD, 所以AC平面PBD. 又AC平面EAC,所以平面EAC平面PBD.,解答,解連接OE. 因為PD平面EAC,平面EAC平面PBDOE, 所以PDOE. 又ACBDO, 所以O是BD的中點,所以E是PB的中點. 因為四邊形ABCD是菱形,且BAD60, 所以取AD的中點H,連接BH,可知BHAD, 又因為PD平面ABCD,BH平面ABCD, 所以PDBH.,又PDADD,PD,AD平面PAD, 所以BH平面PAD.,解得a6.,垂直、平行關系的基礎是線線垂直和線線平行,常用方法如下: (1)證明線線平行常用的方法:一是利
9、用平行公理,即證兩直線同時和第三條直線平行;二是利用平行四邊形進行平行轉換;三是利用三角形的中位線定理證明線線平行;四是利用線面平行、面面平行的性質(zhì)定理進行平行轉換. (2)證明線線垂直常用的方法:利用等腰三角形底邊中線即高線的性質(zhì);勾股定理;線面垂直的性質(zhì),即要證線線垂直,只需證明一條直線垂直于另一條直線所在的平面即可,l,ala.,,證明,跟蹤演練2如圖,在四棱錐PABCD中,ADB90,CBCD,點E為棱PB的中點.,(1)若PBPD,求證:PCBD;,證明取BD的中點O,連接CO,PO, 因為CDCB, 所以CBD為等腰三角形, 所以BDCO. 因為PBPD, 所以PBD為等腰三角形,
10、 所以BDPO. 又POCOO,PO,CO平面PCO, 所以BD平面PCO. 因為PC平面PCO,所以PCBD.,證明,(2)求證:CE平面PAD.,證明由E為PB的中點,連接EO,則EOPD, 又EO平面PAD,PD平面PAD, 所以EO平面PAD. 由ADB90及BDCO,可得COAD, 又CO平面PAD,AD平面PAD, 所以CO平面PAD. 又COEOO,CO,EO平面COE, 所以平面CEO平面PAD, 而CE平面CEO,所以CE平面PAD.,,熱點三平面圖形的翻折問題,平面圖形經(jīng)過翻折成為空間圖形后,原有的性質(zhì)有的發(fā)生變化,有的沒有發(fā)生變化,這些發(fā)生變化和沒有發(fā)生變化的性質(zhì)是解決問
11、題的關鍵.一般地,在翻折后還在一個平面上的性質(zhì)不發(fā)生變化,不在同一個平面上的性質(zhì)發(fā)生變化,解決這類問題就是要根據(jù)這些變與不變,去研究翻折以后的空間圖形中的線面關系和各類幾何量的度量值,這是解決翻折問題的主要方法.,證明,例3如圖1,已知菱形AECD的對角線AC,DE交于點F,點E為AB中點.將ADE沿線段DE折起到PDE的位置,如圖2所示.,(1)求證:DE平面PCF;,證明折疊前,因為四邊形AECD為菱形, 所以ACDE, 所以折疊后,DEPF,DECF, 又PFCFF,PF,CF平面PCF, 所以DE平面PCF.,證明,(2)求證:平面PBC平面PCF;,證明因為四邊形AECD為菱形, 所
12、以DCAE,DCAE. 又點E為AB的中點,所以DCEB,DCEB, 所以四邊形DEBC為平行四邊形,所以CBDE. 又由(1)得,DE平面PCF,所以CB平面PCF. 因為CB平面PBC, 所以平面PBC平面PCF.,解答,(3)在線段PD,BC上是否分別存在點M,N,使得平面CFM平面PEN?若存在,請指出點M,N的位置,并證明;若不存在,請說明理由.,解存在滿足條件的點M,N, 且M,N分別是PD和BC的中點. 如圖,分別取PD和BC的中點M,N.連接EN,PN,MF,CM. 因為四邊形DEBC為平行四邊形, 所以EFCN,EF CN, 所以四邊形ENCF為平行四邊形,所以FCEN.
13、在PDE中,M,F(xiàn)分別為PD,DE的中點, 所以MFPE. 又EN,PE平面PEN,PEENE,MF,CF平面CFM,MFCFF, 所以平面CFM平面PEN.,(1)折疊問題中不變的數(shù)量和位置關系是解題的突破口. (2)存在探索性問題可先假設存在,然后在此前提下進行邏輯推理,得出矛盾則否定假設,否則給出肯定結論.,,證明,(1)求證:CD平面PAB;,又AB2,ABPE,,所以AC是RtABE的斜邊BE上的中線, 所以C是BE的中點, 又因為D是AE的中點, 所以CD是RtABE的中位線,所以CDAB, 又因為CD平面PAB,AB平面PAB, 所以CD平面PAB.,解答,(2)求三棱錐EPAC
14、的體積.,解由(1)知,直線CD是RtABE的中位線,,因為二面角PABE是直二面角,平面PAB平面EABAB,PA平面PAB,PAAB, 所以PA平面ABE, 又因為AP2,,真題押題精練,真題體驗,1.(2017全國改編)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不平行的是______.(填序號),解析,答案,(1),解析對于(1),作如圖所示的輔助線,其中D為BC的中點, 則QDAB. QD平面MNQQ, QD與平面MNQ相交, 直線AB與平面MNQ相交; 對于(2),作如圖所示的輔助線, 則ABCD,CDMQ,
15、ABMQ, 又AB平面MNQ,MQ平面MNQ, AB平面MNQ;,對于(3),作如圖所示的輔助線, 則ABCD,CDMQ,ABMQ, 又AB平面MNQ,MQ平面MNQ, AB平面MNQ; 對于(4),作如圖所示的輔助線, 則ABCD,CDNQ, ABNQ, 又AB平面MNQ,NQ平面MNQ, AB平面MNQ.,2.(2017江蘇)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD平面BCD,點E,F(xiàn)(E與A,D不重合)分別在棱AD,BD上,且EFAD. 求證:(1)EF平面ABC;,證明,證明在平面ABD內(nèi),因為ABAD,EFAD, 所以ABEF. 又EF平面ABC,AB平面ABC, 所
16、以EF平面ABC.,(2)ADAC.,證明,證明因為平面ABD平面BCD, 平面ABD平面BCDBD,BC平面BCD,BCBD, 所以BC平面ABD. 因為AD平面ABD,所以BCAD. 又ABAD,BCABB,AB平面ABC, BC平面ABC,所以AD平面ABC. 又AC平面ABC,所以ADAC.,押題預測,答案,解析,押題依據(jù),押題依據(jù)空間兩條直線、兩個平面之間的平行與垂直的判定是立體幾何的重點內(nèi)容,也是高考命題的熱點.此類題常與命題的真假性、充分條件和必要條件等知識相交匯,意在考查考生的空間想象能力、邏輯推理能力.,1.不重合的兩條直線m,n分別在不重合的兩個平面,內(nèi),下列為真命題的是
17、A.mnm B.mn C.m D.mn,,解析構造長方體,如圖所示. 因為A1C1AA1,A1C1平面AA1C1C,AA1平面AA1B1B, 但A1C1與平面AA1B1B不垂直,平面AA1C1C與平面AA1B1B 也不垂直, 所以選項A,B都是假命題. CC1AA1,但平面AA1C1C與平面AA1B1B相交而不平行, 所以選項D為假命題. “若兩平面平行,則一個平面內(nèi)任何一條直線必平行于另一個平面”是真命題,故選C.,押題依據(jù)以平面圖形的翻折為背景,探索空間直線與平面位置關系,可以考查考生的空間想象能力和邏輯推理能力,預計將成為今年高考的命題方向.,證明,押題依據(jù),2.如圖(1),在正ABC中
18、,E,F(xiàn)分別是AB,AC邊上的點,且BEAF2CF.點P為邊BC上的點,將AEF沿EF折起到A1EF的位置,使平面A1EF平面BEFC,連接A1B,A1P,EP,如圖(2)所示. (1)求證:A1EFP;,證明在正ABC中,取BE的中點D,連接DF,如圖所示. 因為BEAF2CF,所以AFAD,AEDE, 而A60,所以ADF為正三角形. 又AEDE,所以EFAD. 所以在題圖(2)中,A1EEF, 又A1E平面A1EF,平面A1EF平面BEFC, 且平面A1EF平面BEFCEF, 所以A1E平面BEFC. 因為FP平面BEFC,所以A1EFP.,解答,(2)若BPBE,點K為棱A1F的中點,則在平面A1FP上是否存在過點K的直線與平面A1BE平行,若存在,請給予證明;若不存在,請說明理由.,解在平面A1FP上存在過點K的直線與平面A1BE平行. 理由如下: 如題圖(1),在正ABC中,因為BPBE,BEAF, 所以BPAF,所以FPAB,所以FPBE. 如圖所示,取A1P的中點M,連接MK, 因為點K為棱A1F的中點, 所以MKFP. 因為FPBE,所以MKBE. 因為MK平面A1BE,BE平面A1BE,所以MK平面A1BE. 故在平面A1FP上存在過點K的直線MK與平面A1BE平行.,