江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文

上傳人:go****ng 文檔編號:147816751 上傳時間:2022-09-03 格式:DOC 頁數(shù):4 大?。?47KB
收藏 版權(quán)申訴 舉報 下載
江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文_第1頁
第1頁 / 共4頁
江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文_第2頁
第2頁 / 共4頁
江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文》由會員分享,可在線閱讀,更多相關(guān)《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) 文(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、專題升級訓(xùn)練4 函數(shù)圖象與性質(zhì) (時間:60分鐘 滿分:100分) 一、選擇題(本大題共6小題,每小題6分,共36分) 1.若f(x)=,則f(x)的定義域?yàn)?  ). A. B. C. D.(0,+∞) 2.設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x+2)=f(x),則y=f(x)的圖象可能是(  ). 3.(2012·江西六校聯(lián)考,文10)若函數(shù)f(x)的圖象經(jīng)過變換T后所得圖象對應(yīng)函數(shù)的值域與函數(shù)f(x)的值域相同,則稱變換T是函數(shù)f(x)的同值變換.下面給出四個函數(shù)及其對應(yīng)的變換T,其中變換T不屬于函數(shù)f(x)的同值變換的是( 

2、 ). A.f(x)=(x-1)2,變換T將函數(shù)f(x)的圖象關(guān)于y軸對稱 B.f(x)=2x-1-1,變換T將函數(shù)f(x)的圖象關(guān)于x軸對稱 C.f(x)=2x+3,變換T將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,1)對稱 D.f(x)=sin,變換T將函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對稱 4.已知函數(shù)f(x)=ln(x+),若實(shí)數(shù)a,b滿足f(a)+f(b-1)=0,則a+b等于(  ). A.-1 B.0 C.1 D.不確定 5.記max{a,b}=若x,y滿足則z=max{y+x,y-x}的取值范圍是(  ). A.[-1,1] B.[-

3、1,2] C.[0,2] D.[-2,2] 6.設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若函數(shù)y=f(x)-g(x)在x∈[a,b]上有兩個不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2-3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍為(  ). A. B.[-1,0] C.(-∞,-2] D. 二、填空題(本大題共3小題,每小題6分,共18分) 7.設(shè)函數(shù)f(x)=若f(x)=1,則x=__________. 8.若函數(shù)f(x

4、)=ax2+x+1的值域?yàn)镽,則函數(shù)g(x)=x2+ax+1的值域?yàn)開_________. 9.已知函數(shù)f(x)=ln x+2x,若f(x2+2)<f(3x),則實(shí)數(shù)x的取值范圍是__________. 三、解答題(本大題共3小題,共46分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟) 10.(本小題滿分15分)已知二次函數(shù)f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x. (1)求f(x); (2)求f(x)在區(qū)間[-1,1]上的最大值和最小值. 11.(本小題滿分15分)已知函數(shù)f(x)=ax2-2ax+2+b(a≠0)在區(qū)間[2,3]上有最大值5,最小值2. (

5、1)求a,b的值; (2)若b<1,g(x)=f(x)-2mx在[2,4]上單調(diào),求m的取值范圍. 12.(本小題滿分16分)定義在[-1,1]上的奇函數(shù)f(x),已知當(dāng)x∈[-1,0]時,f(x)=-(a∈R). (1)求f(x)在[0,1]上的最大值; (2)若f(x)是[0,1]上的增函數(shù),求實(shí)數(shù)a的取值范圍. 參考答案 一、選擇題 1.A 解析:根據(jù)題意得,即0<2x+1<1,解得x∈. 2.B 解析:由f(-x)=f(x)可知函數(shù)為偶函數(shù),其圖象關(guān)于y軸對稱,可以結(jié)合選項(xiàng)排除A、C,再利用f(x+2)=f(x),可知函數(shù)為周期函數(shù),且T=2,必滿足f(4)=f(2

6、),排除D,故只能選B. 3.B 解析:對于A,與f(x)=(x-1)2的圖象關(guān)于y軸對稱的圖象對應(yīng)的函數(shù)為g(x)=(-x-1)2=(x+1)2,易知兩者的值域都為[0,+∞);對于B,函數(shù)f(x)=2x-1-1的值域?yàn)?-1,+∞),與函數(shù)f(x)的圖象關(guān)于x軸對稱的圖象對應(yīng)的函數(shù)為g(x)=-2x-1+1,其值域?yàn)?-∞,1);對于C,與f(x)=2x+3的圖象關(guān)于點(diǎn)(-1,1)對稱的圖象對應(yīng)的函數(shù)為2-g(x)=2(-2-x)+3,即g(x)=2x+3,易知值域相同;對于D,與f(x)=sin的圖象關(guān)于點(diǎn)(-1,0)對稱的圖象對應(yīng)的函數(shù)為g(x)=sin,其值域?yàn)閇-1,1],易知兩

7、函數(shù)的值域相同. 4.C 解析:觀察得f(x)在定義域內(nèi)是增函數(shù),而f(-x)=ln(-x+)=ln=-f(x), ∴f(x)是奇函數(shù). 又f(a)=-f(b-1)=f(1-b). ∴a=1-b,即a+b=1.故選C. 5.B 解析:當(dāng)y+x≥y-x,即x≥0時,z=max{y+x,y-x}=y(tǒng)+x; 當(dāng)y+x<y-x,即x<0時,z=max{y+x,y-x}=y(tǒng)-x. ∴z=max{y-x,y+x}= ∴z的取值范圍為[-1,2]. 6.A 解析:∵y=f(x)-g(x)=x2-3x+4-2x-m=x2-5x+4-m在[0,3]上有兩個不同的零點(diǎn), ∴∴-<m≤-2.

8、二、填空題 7.-2 解析:當(dāng)x≤1時,由|x|-1=1,得x=±2,故可得x=-2;當(dāng)x>1時,由2-2x=1,得x=0,不適合題意.故x=-2. 8.[1,+∞) 解析:要使f(x)的值域?yàn)镽,必有a=0,于是g(x)=x2+1,值域?yàn)閇1,+∞). 9.(1,2) 解析:函數(shù)f(x)=ln x+2x在區(qū)間(0,+∞)上是增函數(shù), 由f(x2+2)<f(3x),得解得1<x<2. 三、解答題 10.解:(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0), ∵f(0)=1,∴c=1. ∵f(x+1)-f(x)=2x, ∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=

9、2x,即2ax+a+b=2x. ∴∴∴f(x)=x2-x+1. (2)f(x)=x2-x+1,f(x)min=f=,f(x)max=f(-1)=3. 11.解:(1)f(x)=a(x-1)2+2+b-a. ①當(dāng)a>0時,f(x)在[2,3]上為增函數(shù), 故?? ②當(dāng)a<0時,f(x)在[2,3]上為減函數(shù), 故?? (2)∵b<1,∴a=1,b=0, 即f(x)=x2-2x+2,g(x)=x2-2x+2-2m·x=x2-(2+2m)x+2. 若g(x)在[2,4]上單調(diào),則≤2或≥4, ∴2m≤2或2m≥6,即m≤1或m≥log26. 12.解:(1)設(shè)x∈[0,1],

10、則-x∈[-1,0],f(-x)=-=4x-a·2x. ∵f(-x)=-f(x),∴f(x)=a·2x-4x,x∈[0,1]. 令t=2x,t∈[1,2], ∴g(t)=a·t-t2=-2+. 當(dāng)≤1,即a≤2時,g(t)max=g(1)=a-1; 當(dāng)1<<2,即2<a<4時,g(t)max=g=; 當(dāng)≥2,即a≥4時,g(t)max=g(2)=2a-4. 綜上,當(dāng)a≤2時,f(x)的最大值為a-1; 當(dāng)2<a<4時,f(x)的最大值為; 當(dāng)a≥4時,f(x)的最大值為2a-4. (2)∵函數(shù)f(x)在[0,1]上是增函數(shù), ∴f′(x)=aln 2·2x-ln 4·4x=2xln 2(a-2·2x)≥0, ∴a-2·2x≥0,a≥2·2x恒成立, ∵2x∈[1,2],∴a≥4.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!