《山東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練18 隨機(jī)變量及其分布列 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《山東省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練18 隨機(jī)變量及其分布列 理(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題升級(jí)訓(xùn)練18 隨機(jī)變量及其分布列
(時(shí)間:60分鐘 滿分:100分)
一、選擇題(本大題共6小題,每小題6分,共36分)
1.已知P(ξ=1)=,P(ξ=-1)=,則D(ξ)等于( ).
A.2 B.4 C.1 D.6
2.同時(shí)擲3枚均勻硬幣,恰好有2枚正面向上的概率為( ).
A.0.5 B.0.25 C.0.125 D.0.375
3.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點(diǎn)數(shù)是3”為事件B,則事件A,B中至少有一件發(fā)生的概率是( ).
A. B. C.
2、 D.
4.甲、乙兩隊(duì)進(jìn)行排球決賽,現(xiàn)在的情形是甲隊(duì)只要再贏一局就獲冠軍,乙隊(duì)需要再贏兩局才能得冠軍.若兩隊(duì)勝每局的概率相同,則甲隊(duì)獲得冠軍的概率為( ).
A. B. C. D.
5.從1,2,3,4,5中任取2個(gè)不同的數(shù),事件A=“取到的2個(gè)數(shù)之和為偶數(shù)”,事件B=“取到的2個(gè)數(shù)均為偶數(shù)”,則P(B|A)=( ).
A. B. C. D.
6.兩個(gè)實(shí)習(xí)生每人加工一個(gè)零件,加工為一等品的概率分別為和,兩個(gè)零件是否加工為一等品相互獨(dú)立,則這兩個(gè)零件中恰有一個(gè)一等品的概率為( ).
A. B. C. D.
3、
二、填空題(本大題共3小題,每小題6分,共18分)
7.隨機(jī)變量ξ的分布列如下:
ξ
-1
0
1
P
a
b
c
其中a,b,c成等差數(shù)列,若E(ξ)=,則D(ξ)的值為__________.
8.連續(xù)擲一枚均勻的正方體骰子(6個(gè)面分別標(biāo)有1,2,3,4,5,6),現(xiàn)定義數(shù)列an=Sn是其前n項(xiàng)和,則S5=3的概率是__________.
9.畢業(yè)生小王參加人才招聘會(huì),分別向A,B兩個(gè)公司投遞個(gè)人簡歷.假定小王得到A公司面試的概率為,得到B公司面試的概率為p,且兩個(gè)公司是否讓其面試是獨(dú)立的.記ξ為小王得到面試的公司個(gè)數(shù).若ξ=0時(shí)的概率P(ξ=0)=,則隨機(jī)變量ξ的
4、數(shù)學(xué)期望E(ξ)=__________.
三、解答題(本大題共3小題,共46分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟)
10.(本小題滿分15分)已知箱中裝有4個(gè)白球和5個(gè)黑球,且規(guī)定:取出一個(gè)白球得2分,取出一個(gè)黑球得1分.現(xiàn)從該箱中任取(無放回,且每球取到的機(jī)會(huì)均等)3個(gè)球,記隨機(jī)變量X為取出此3球所得分?jǐn)?shù)之和.
(1)求X的分布列;
(2)求X的數(shù)學(xué)期望E(X).
11.(本小題滿分15分)某超市為了解顧客的購物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購物量
1至
4件
5至
8件
9至
12件
5、13至
16件
17件及
以上
顧客數(shù)(人)
x
30
25
y
10
結(jié)算時(shí)間
(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并估計(jì)顧客一次購物的結(jié)算時(shí)間的平均值;
(2)求一位顧客一次購物的結(jié)算時(shí)間不超過2分鐘的概率.(將頻率視為概率)
12.(本小題滿分16分)“天宮一號(hào)”的順利升空標(biāo)志著我國火箭運(yùn)載的技術(shù)日趨完善.據(jù)悉,擔(dān)任“天宮一號(hào)”發(fā)射任務(wù)的是長征二號(hào)FT1火箭.為了確保發(fā)射萬無一失,科學(xué)家對(duì)長征二號(hào)FT1運(yùn)載火箭進(jìn)行了170余項(xiàng)技術(shù)狀態(tài)更改,增加了某項(xiàng)新技術(shù).該項(xiàng)新
6、技術(shù)要進(jìn)入試用階段前必須對(duì)其中三項(xiàng)不同指標(biāo)甲、乙、丙進(jìn)行通過量化檢測(cè).假設(shè)該項(xiàng)新技術(shù)的指標(biāo)甲、乙、丙獨(dú)立通過檢測(cè)合格的概率分別為,,,指標(biāo)甲、乙、丙檢測(cè)合格分別記4分、2分、4分,若某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)記0分,各項(xiàng)指標(biāo)檢測(cè)結(jié)果互不影響.
(1)求該項(xiàng)技術(shù)量化得分不低于8分的概率;
(2)記該項(xiàng)技術(shù)的三個(gè)指標(biāo)中被檢測(cè)合格的指標(biāo)個(gè)數(shù)為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望.
參考答案
一、選擇題
1.C 解析:E(ξ)=1×+(-1)×=0,
D(ξ)=12×+(-1)2×=1.
2.D 解析:擲3枚均勻硬幣,設(shè)正面向上的個(gè)數(shù)為X,則X服從二項(xiàng)分布,即X~B,∴P(X=2)=·2·
7、==0.375.
3.C 解析:事件A,B中至少有一件發(fā)生的概率是
1-P(·)=1-×=.
4.D 解析:由甲、乙兩隊(duì)每局獲勝的概率相同,知甲每局獲勝的概率為,甲要獲得冠軍有兩種情況:第一種情況是再打一局甲贏,甲獲勝概率為;第二種情況是再打兩局,第一局甲輸,第二局甲贏.則其概率為×=.故甲獲得冠軍的概率為+=.
5.B 解析:∵,,
∴P(B|A)==.
6.B 解析:記兩個(gè)零件中恰有一個(gè)一等品的事件為A,
則P(A)=×+×=.
二、填空題
7. 解析:由題意知:解得
∴.
8. 解析:該試驗(yàn)可看作一個(gè)獨(dú)立重復(fù)試驗(yàn),結(jié)果為-1發(fā)生的概率為,結(jié)果為1發(fā)生的概率為,S5=
8、3即5次試驗(yàn)中-1發(fā)生一次,1發(fā)生四次,故其概率為
.
9. 解析:由題意,得P(ξ=2)=p,P(ξ=1)=(1-p)+p=,
ξ的分布列為
ξ
0
1
2
P
p
由++p=1,得p=.
所以E(ξ)=0×+1×+2×p=.
三、解答題
10.解:(1)由題意得X取3,4,5,6,且
,
,
,
.
所以X的分布列為
X
3
4
5
6
P
(2)由(1)知E(X)=3·P(X=3)+4·P(X=4)+5·P(X=5)+6·P(X=6)=.
11.解:(1)由已知得25+y+10=55,x+y=35,
所以x=1
9、5,y=20.
該超市所有顧客一次購物的結(jié)算時(shí)間組成一個(gè)總體,所收集的100位顧客一次購物的結(jié)算時(shí)間可視為總體的一個(gè)容量為100的簡單隨機(jī)樣本,顧客一次購物的結(jié)算時(shí)間的平均值可用樣本平均數(shù)估計(jì),其估計(jì)值為=1.9(分鐘).
(2)記A為事件“一位顧客一次購物的結(jié)算時(shí)間不超過2分鐘”,A1,A2,A3分別表示事件“該顧客一次購物的結(jié)算時(shí)間為1分鐘”,“該顧客一次購物的結(jié)算時(shí)間為1.5分鐘”,“該顧客一次購物的結(jié)算時(shí)間為2分鐘”,將頻率視為概率,得
P(A1)==,P(A2)==,P(A3)==.
因?yàn)锳=A1∪A2∪A3,且A1,A2,A3是互斥事件,
所以P(A)=P(A1∪A2∪A
10、3)
=P(A1)+P(A2)+P(A3)
=++=.
故一位顧客一次購物的結(jié)算時(shí)間不超過2分鐘的概率為.
12.解:(1)記該項(xiàng)新技術(shù)的三個(gè)指標(biāo)甲、乙、丙獨(dú)立通過檢測(cè)合格分別為事件A,B,C,則事件“得分不低于8分”表示為ABC+AC.
∵ABC與AC為互斥事件,且A,B,C彼此獨(dú)立,
∴P(ABC+AC)=P(ABC)+P(AC)=P(A)P(B)P(C)+P(A)P()P(C)=××+××=.
(2)該項(xiàng)新技術(shù)的三個(gè)指標(biāo)中被檢測(cè)合格的指標(biāo)個(gè)數(shù)ξ的取值為0,1,2,3.
∵P(ξ=0)=P()=××=,
P(ξ=1)=P(A+B+C)
=××+××+××=,
P(ξ=2)=P(AB+AC+BC)
=××+××+××=,
P(ξ=3)=P(ABC)=××=,
∴隨機(jī)變量ξ的分布列為
ξ
0
1
2
3
P
∴E(ξ)=++==.