2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt

上傳人:tia****nde 文檔編號:14881355 上傳時間:2020-07-31 格式:PPT 頁數(shù):30 大?。?49KB
收藏 版權(quán)申訴 舉報 下載
2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt_第1頁
第1頁 / 共30頁
2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt_第2頁
第2頁 / 共30頁
2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt_第3頁
第3頁 / 共30頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)新設(shè)計大一輪復(fù)習(xí) 第二章 函數(shù)概念與基本初等函數(shù)Ⅰ第9節(jié) 函數(shù)模型及其應(yīng)用課件 理 新人教A版.ppt(30頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第9節(jié)函數(shù)模型及其應(yīng)用,最新考綱1.了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的增長特征,結(jié)合具體實例體會直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義;2.了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.,知 識 梳 理,1.指數(shù)、對數(shù)、冪函數(shù)模型性質(zhì)比較,遞增,遞增,y軸,x軸,2.幾種常見的函數(shù)模型,微點提醒,1.“直線上升”是勻速增長,其增長量固定不變;“指數(shù)增長”先慢后快,其增長量成倍增加,常用“指數(shù)爆炸”來形容;“對數(shù)增長”先快后慢,其增長速度緩慢. 2.充分理解題意,并熟練掌握幾種常見函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵. 3.易忽視實際問題中

2、自變量的取值范圍,需合理確定函數(shù)的定義域,必須驗證數(shù)學(xué)結(jié)果對實際問題的合理性.,基 礎(chǔ) 自 測,1.判斷下列結(jié)論正誤(在括號內(nèi)打“”或“”),(1)某種商品進價為每件100元,按進價增加10%出售,后因庫存積壓降價,若按九折出售,則每件還能獲利.() (2)函數(shù)y2x的函數(shù)值比yx2的函數(shù)值大.(),(4)在(0,)上,隨著x的增大,yax(a1)的增長速度會超過并遠遠大于yxa(a0)的增長速度.(),(2)中,當x2時,2xx24.不正確.,答案(1)(2)(3)(4),2.(必修1P107A1改編)在某個物理實驗中,測得變量x和變量y的幾組數(shù)據(jù),如下表:,則對x,y最適合的擬合函數(shù)是()

3、 A.y2x B.yx21 C.y2x2 D.ylog2x,解析根據(jù)x0.50,y0.99,代入計算,可以排除A;根據(jù)x2.01,y0.98,代入計算,可以排除B,C;將各數(shù)據(jù)代入函數(shù)ylog2x,可知滿足題意. 答案D,3.(必修1P59A6改編)某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2017年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是(參考數(shù)據(jù):lg 1.120.05,lg 1.30.11,lg 20.30)() A.2020年 B.2021年C.2022年 D.2023年,解析設(shè)經(jīng)過n年

4、資金開始超過200萬元,即130(112%)n200. 兩邊取對數(shù),得nlg1.12lg 2lg 1.3,,從2021年開始,該公司投入的研發(fā)資金開始超過200萬元. 答案B,A.36萬件 B.18萬件 C.22萬件 D.9萬件,答案B,5.(2018黃岡檢測)已知f(x)x2,g(x)2x,h(x)log2x,當x(4,)時,對三個函數(shù)的增長速度進行比較,下列選項中正確的是(),A.f(x)g(x)h(x) B.g(x)f(x)h(x) C.g(x)h(x)f(x) D.f(x)h(x)g(x) 解析在同一坐標系內(nèi),根據(jù)函數(shù)圖象變化趨勢,當x(4,)時,增長速度由大到小依次g(x)f(x)h

5、(x). 答案B,6.(2019北京海淀區(qū)月考)某公司為了發(fā)展業(yè)務(wù)制定了一個激勵銷售人員的獎勵方案,在銷售額x為8萬元時,獎勵1萬元.銷售額x為64萬元時,獎勵4萬元.若公司擬定的獎勵模型為yalog4xb.某業(yè)務(wù)員要得到8萬元獎勵,則他的銷售額應(yīng)為________萬元.,答案1 024,考點一利用函數(shù)的圖象刻畫實際問題,【例1】 (2017全國卷)某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.,,根據(jù)該折線圖,下列結(jié)論錯誤的是() A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.

6、各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn),解析由題圖可知,2014年8月到9月的月接待游客量在減少,則A選項錯誤. 答案A,規(guī)律方法1.當根據(jù)題意不易建立函數(shù)模型時,則根據(jù)實際問題中兩變量的變化快慢等特點,結(jié)合圖象的變化趨勢,驗證是否吻合,從中排除不符合實際的情況,選出符合實際情況的答案. 2.圖形、表格能直觀刻畫兩變量間的依存關(guān)系,考查了數(shù)學(xué)直觀想象核心素養(yǎng).,【訓(xùn)練1】 高為H,滿缸水量為V的魚缸的軸截面如圖所示,其底部破了一個小洞,滿缸水從洞中流出,若魚缸水深為h時水的體積為v,則函數(shù)vf(h)的大致圖象是(),

7、解析vf(h)是增函數(shù),且曲線的斜率應(yīng)該是先變大后變小,故選B. 答案B,考點二已知函數(shù)模型求解實際問題,(1)求k的值及f(x)的表達式; (2)隔熱層修建多厚時,總費用f(x)達到最?。坎⑶笞钚≈?,此時x5,因此f(x)的最小值為70. 隔熱層修建5 cm厚時,總費用f(x)達到最小,最小值為70萬元.,規(guī)律方法1.求解已知函數(shù)模型解決實際問題的關(guān)注點. (1)認清所給函數(shù)模型,弄清哪些量為待定系數(shù). (2)根據(jù)已知利用待定系數(shù)法,確定模型中的待定系數(shù). 2.利用該函數(shù)模型,借助函數(shù)的性質(zhì)、導(dǎo)數(shù)等求解實際問題,并進行檢驗.,解設(shè)該服裝廠所獲效益為f(x)元,,所以當x20時,f(x)有最

8、大值120 000.,令f(x)0,x80. 當200,f(x)單調(diào)遞增,當80 x180時,f(x)0,f(x)單調(diào)遞減, 所以當x80時,f(x)有極大值,也是最大值240 000. 由于120 000<240 000. 故該服裝廠所獲得的最大效益是240 000元.,考點三構(gòu)造函數(shù)模型求解實際問題多維探究 角度1二次函數(shù)、分段函數(shù)模型,【例31】 “活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當x不超過4尾/立方米時,v的值為2千克/年;當4

9、時,v是x的一次函數(shù),當x達到20尾/立方米時,因缺氧等原因,v的值為0千克/年. (1)當0

10、度2構(gòu)建指數(shù)(對數(shù))型函數(shù)模型,(1)求每年砍伐面積的百分比; (2)到今年為止,該森林已砍伐了多少年?,解(1)設(shè)每年砍伐面積的百分比為x(0

11、訓(xùn)練3】 (1)某單位為鼓勵職工節(jié)約用水,作出了以下規(guī)定:每位職工每月用水不超過10 m3的,按每立方米m元收費;用水超過10 m3的,超過部分加倍收費.某職工某月繳水費16m元,則該職工這個月實際用水為() A.13 m3 B.14 m3 C.18 m3 D.26 m3,A.1033 B.1053 C.1073 D.1093,解析(1)設(shè)該職工用水x m3時,繳納的水費為y元,,則10m(x10)2m16m,解得x13.,答案(1)A(2)D,思維升華,解函數(shù)應(yīng)用問題的步驟 (1)審題:弄清題意,分清條件和結(jié)論,理順數(shù)量關(guān)系,初步選擇數(shù)學(xué)模型; (2)建模:將自然語言轉(zhuǎn)化為數(shù)學(xué)語言,將文字語言轉(zhuǎn)化為符號語言,利用數(shù)學(xué)知識,建立相應(yīng)的數(shù)學(xué)模型; (3)解模:求解數(shù)學(xué)模型,得出數(shù)學(xué)結(jié)論; (4)還原:將數(shù)學(xué)問題還原為實際問題.,以上過程用框圖表示如下:,易錯防范 1.解應(yīng)用題思路的關(guān)鍵是審題,不僅要明白、理解問題講的是什么,還要特別注意一些關(guān)鍵的字眼(如“幾年后”與“第幾年后”,學(xué)生常常由于讀題不謹慎而漏讀和錯讀,導(dǎo)致題目不會做或函數(shù)解析式寫錯,故建議復(fù)習(xí)時務(wù)必養(yǎng)成良好的審題習(xí)慣. 2.在解應(yīng)用題建模后一定要注意定義域,建模的關(guān)鍵是注意尋找量與量之間的相互依賴關(guān)系. 3.解決完數(shù)學(xué)模型后,注意轉(zhuǎn)化為實際問題寫出總結(jié)答案.,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!