《(課標(biāo)通用)高考數(shù)學(xué)一輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)17 理-人教版高三全冊(cè)數(shù)學(xué)試題》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《(課標(biāo)通用)高考數(shù)學(xué)一輪復(fù)習(xí) 課時(shí)跟蹤檢測(cè)17 理-人教版高三全冊(cè)數(shù)學(xué)試題(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)跟蹤檢測(cè)(十七)高考基礎(chǔ)題型得分練1設(shè)f(x)a(x5)26ln x(x0),其中aR,曲線(xiàn)yf(x)在點(diǎn)(1,f(1)處的切線(xiàn)與y軸相交于點(diǎn)(0,6)(1)確定a的值;(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值解:(1)因?yàn)閒(x)a(x5)26ln x(x0),故f(x)2a(x5).令x1,得f(1)16a,f(1)68a,所以曲線(xiàn)yf(x)在點(diǎn)(1,f(1)處的切線(xiàn)方程為y16a(68a)(x1),由點(diǎn)(0,6)在切線(xiàn)上,可得616a8a6,解得a.(2)由(1)知,f(x)(x5)26ln x(x0),f(x)x5.令f(x)0,解得x12,x23.當(dāng)0x3時(shí),f(x)0,故f(x)的
2、遞增區(qū)間是(0,2),(3,);當(dāng)2x3時(shí),f(x)0,故f(x)的遞減區(qū)間是(2,3)由此可知f(x)在x2處取得極大值f(2)6ln 2,在x3處取得極小值f(3)26ln 3.22017甘肅蘭州模擬已知函數(shù)f(x)exax(aR,e為自然對(duì)數(shù)的底數(shù))(1)討論函數(shù)f(x)的單調(diào)性;(2)若a1,函數(shù)g(x)(xm)f(x)exx2x在(2,)上為增函數(shù),求實(shí)數(shù)m的取值范圍解:(1)函數(shù)f(x)的定義域?yàn)镽,f(x)exa.當(dāng)a0時(shí),f(x)0,f(x)在R上為增函數(shù);當(dāng)a0時(shí),由f(x)0得xln a,則當(dāng)x(,ln a)時(shí),f(x)0,函數(shù)f(x)在(ln a,)上為增函數(shù)(2)當(dāng)a1
3、時(shí),g(x)(xm)(exx)exx2x,g(x)在(2,)上為增函數(shù),g(x)xexmexm10在(2,)上恒成立,即m在(2,)上恒成立,令h(x),x(2,),h(x).令L(x)exx2,L(x)ex10在(2,)上恒成立,即L(x)exx2在(2,)上為增函數(shù),即L(x)L(2)e240,h(x)0,即h(x)在(2,)上為增函數(shù),h(x)h(2),m.實(shí)數(shù)m的取值范圍是.3已知f(x)ax2(a2)xln x.(1)當(dāng)a1時(shí),求yf(x)在(1,f(1)處的切線(xiàn)方程;(2)當(dāng)a0時(shí),若f(x)在區(qū)間1,e上最小值為2,求實(shí)數(shù)a的取值范圍解:(1)當(dāng)a1時(shí),f(x)x23xln x,
4、f(x)2x3.因?yàn)閒(1)0,f(1)2,所以曲線(xiàn)yf(x)在點(diǎn)(1,2)處的切線(xiàn)方程是y2.(2)函數(shù)f(x)ax2(a2)xln x的定義域是(0,)當(dāng)a0時(shí),f(x)2ax(a2),令f(x)0,x或x.當(dāng)01,即a1時(shí),f(x)在1,e上單調(diào)遞增,所以f(x)在1,e上的最小值是f(1)2;當(dāng)1e時(shí),f(x)在1,e上的最小值ff(1)2,不合題意;當(dāng)e時(shí),f(x)在1,e上單調(diào)遞減,此時(shí)f(x)在1,e上的最小值f(e)f(1)2,不合題意綜上,實(shí)數(shù)a的取值范圍為1,)4已知函數(shù)f(x)exln(xm)(1)設(shè)x0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;(2)當(dāng)m2時(shí),證
5、明:f(x)0.(1)解:f(x)ex,由x0是f(x)的極值點(diǎn)得f(0)0,所以m1.于是f(x)exln(x1),定義域?yàn)?1,),f(x)ex.函數(shù)f(x)ex在(1,)上單調(diào)遞增,且f(0)0,因此當(dāng)x(1,0)時(shí),f(x)0;當(dāng)x(0,)時(shí),f(x)0.所以f(x)在(1,0)上單調(diào)遞減,在(0,)上單調(diào)遞增(2)證明:當(dāng)m2,x(m,)時(shí),ln(xm)ln(x2),故只需證明當(dāng)m2時(shí),f(x)0.當(dāng)m2時(shí),函數(shù)f(x)ex在(2,)上單調(diào)遞增又f(1)0,f(0)0,故f(x)0在(2,)上有唯一實(shí)根x0,且x0(1,0)當(dāng)x(2,x0)時(shí),f(x)0;當(dāng)x(x0,)時(shí),f(x)0
6、.故當(dāng)xx0時(shí),f(x)取得最小值由f(x0)0得e x0,ln(x02)x0,故f(x)f(x0)x00.綜上,當(dāng)m2時(shí),f(x)0.沖刺名校能力提升練12017吉林省實(shí)驗(yàn)中學(xué)二模已知函數(shù)f(x)mxln x,其中m為常數(shù),e為自然對(duì)數(shù)的底數(shù)(1)當(dāng)m1時(shí),求f(x)的最大值;(2)若f(x)在區(qū)間(0,e上的最大值為3,求m的值解:(1)當(dāng)m1時(shí),f(x)xln x,定義域?yàn)?0,)求導(dǎo)得f(x)1,令f(x)0,得x1.當(dāng)x變化時(shí),f(x),f(x)的變化情況如下表.x(0,1)1(1,)f(x)0f(x)1由表可知f(x)的最大值為f(1)1.(2)求導(dǎo)得f(x)m.當(dāng)m0時(shí),f(x)
7、0恒成立,此時(shí)f(x)在(0,e上單調(diào)遞增,最大值為f(e)me13,解得m,不符合要求;當(dāng)m0時(shí),令f(x)0,得x,若e,此時(shí)f(x)0在(0,e上恒成立,此時(shí)f(x)在(0,e上單調(diào)遞增,最大值為f(e)me13,解得m,不符合要求;若0在上成立,f(x)0在上成立,此時(shí)f(x)在(0,e上先增后減,最大值為f1ln3,解得me2,符合要求綜上可知,m的值為e2.22017河南鄭州模擬已知函數(shù)f(x)ax1ln x,其中a為常數(shù)(1)當(dāng)a時(shí),若f(x)在區(qū)間(0,e)上的最大值為4,求a的值;(2)當(dāng)a時(shí),若函數(shù)g(x)|f(x)|存在零點(diǎn),求實(shí)數(shù)b的取值范圍解:(1)f(x)a,令f(
8、x)0得x,因?yàn)閍,所以00得,0x;由f(x)0得,x0,當(dāng)a時(shí),f(x)1ln x,所以f(x),當(dāng)0x0;當(dāng)xe時(shí),f(x)0.所以f(x)的增區(qū)間為(0,e),減區(qū)間為(e,),所以f(x)maxf(e)1,所以|f(x)|1.令h(x),則h(x).當(dāng)0x0;當(dāng)xe時(shí),h(x)0.從而h(x)在(0,e)上單調(diào)遞增,在(e,)上單調(diào)遞減,所以h(x)maxh(e),要使方程|f(x)|有實(shí)數(shù)根,只需h(x)max1即可,故b2.即所求實(shí)數(shù)b的取值范圍是.32017山東青州高三10月段測(cè)函數(shù)f(x)aln xx21.(1)當(dāng)a時(shí),求f(x)在區(qū)間上的最值;(2)討論函數(shù)f(x)的單調(diào)性
9、;(3)當(dāng)1a1ln(a)恒成立,求a的取值范圍解:(1)當(dāng)a時(shí),f(x)ln x1,f(x).f(x)的定義域?yàn)?0,),由f(x)0,得x1,f(x)在區(qū)間上的最值只可能在f(1),f,f(e)取到,而f(1),f,f(e),f(x)maxf(e),f(x)minf(1).(2)f(x),x(0,)當(dāng)a10,即a1時(shí),f(x)0,f(x)在(0,)上單調(diào)遞增;當(dāng)1a0得x2,x或x(舍去),f(x)在上遞增,在上遞減;綜上,當(dāng)a0時(shí),f(x)在(0,)上遞增;當(dāng)1a0時(shí),f(x)在上遞增,在上遞減;當(dāng)a1時(shí),f(x)在(0,)上遞減(3)由(2)知,當(dāng)1a1ln(a),即aln 11ln(
10、a),整理得ln(a1)1,a1,又1am恒成立,求實(shí)數(shù)m的最大值解:(1)由題意可知,h(x)x2axln x(x0),則h(x)(x0),若h(x)的單調(diào)減區(qū)間是,則h(1)h0,解得a3,而當(dāng)a3時(shí),h(x)(x0)由h(x)0),ax(x0)令(x)x(x0),則(x),yx2ln x1在(0,)上是增函數(shù),且x1時(shí),y0.當(dāng)x(0,1)時(shí),(x)0.即(x)在(0,1)上是減函數(shù),在(1,)上是增函數(shù),(x)min(1)1,故a1.即實(shí)數(shù)a的取值范圍為(,1(3)由題意可知,h(x)x2axln x(x0),則h(x)(x0)可得方程2x2ax10(x0)有兩個(gè)不相等的實(shí)數(shù)根x1,x2,且x1,x1x2,x2(1,),且ax12x1,ax22x1,h(x1)h(x2)(xax1ln x1)(xax2ln x2)x(2x1)ln x1x(2x1)ln x2xxln xln(2x)(x21)設(shè)L(x)x2ln(2x2)(x1),則L(x)0(x1),L(x)在(1,)上是增函數(shù),L(x)L(1)ln 2,即h(x1)h(x2)ln 2,mln 2.即m的最大值為ln 2.