定價(jià)競(jìng)爭(zhēng)策略英文

上傳人:muj****520 文檔編號(hào):248192231 上傳時(shí)間:2024-10-22 格式:PPTX 頁(yè)數(shù):41 大?。?02.44KB
收藏 版權(quán)申訴 舉報(bào) 下載
定價(jià)競(jìng)爭(zhēng)策略英文_第1頁(yè)
第1頁(yè) / 共41頁(yè)
定價(jià)競(jìng)爭(zhēng)策略英文_第2頁(yè)
第2頁(yè) / 共41頁(yè)
定價(jià)競(jìng)爭(zhēng)策略英文_第3頁(yè)
第3頁(yè) / 共41頁(yè)

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《定價(jià)競(jìng)爭(zhēng)策略英文》由會(huì)員分享,可在線閱讀,更多相關(guān)《定價(jià)競(jìng)爭(zhēng)策略英文(41頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、單擊此處編輯母版標(biāo)題樣式,*,單擊此處編輯母版文本樣式,第二級(jí),第三級(jí),第四級(jí),第五級(jí),Lecture#9:Black-Scholesoption pricingformula,Brownian Motion,The firstformal mathematicalmodelof financial assetprices,developed byBachelier(1900),was the continuous-time randomwalk,or Brownian motion.Thiscontinuous-time processis closelyrelated to thedisc

2、rete-timeversions of therandom walk.,The discrete-time randomwalk,P,k,=P,k-1,+,k,k,=,(-,)with probability,(1-,),P,0,is fixed.Consider the following continuous time process P,n,(t),t,0,T,which is constructed from the discrete time processP,k,k=1,.nas follows:Leth=T/n anddefine the process,P,n,(t)=P,t

3、/h,=P,nt/T,t,0,T,where x denotesthegreatest integer less than orequalto x.P,n,(t)is a left continuousstepfunction.,We need toadjust,suchthatP,n,(t)will converge when ngoesto infinity.Consider themeanandvariance of P,n,(T):,E(P,n,(T)=n(2,-1),Var(P,n,(T)=4n,(,-1),2,We wish toobtain acontinuoustimevers

4、ion of therandom walk,we should expectthemeanand variance ofthelimiting process P(T)tobe linearin T.Therefore,wemusthave,n(2,-1),T,4n,(,-1),2,T,Thiscan be accomplishedby setting,=*(1+,h/,),=,h,The continuoustimelimit,It cab beshownthattheprocess P(t)has thefollowingthree properties:,1.For any t,1,an

5、d t,2,suchthat0,t,1,t,2,T:,P(t,1,)-P(t,2,),(,(t,2,-t,1,),2,(t,2,-t,1,),2.For any t,1,t,2,t,3,andt,4,suchthat0,t,1,t,2,t,1,t,2,t,3,t,4,T,the increment,P(t,2,)-P(t,1,)isstatistically independentof the increment P(t,4,)-P(t,3,).,3.The samplepathsof P(t)are continuous.,P(t)is calledarithmeticBrownianmot

6、ion orWinner process.,If weset,=0,=1,we obtain standard Brownian Motion whichis denotedas B(t).Accordingly,P(t)=,t+,B(t),Considerthefollowingmoments:,EP(t)|P(t,0,)=P(t,0,)+,(t-t,0,),VarP(t)|P(t,0,)=,2,(t-t,0,),Cov(P(t,1,),P(t,2,)=,2,min(t,1,t,2,),SinceVar(B(t+h)-B(t)/h=,2,/h,therefore,thederivativeo

7、fBrownianmotion,B,(t)doesnotexistintheordinarysense,theyarenowheredifferentiable.,Stochasticdifferentialequations,Despitethefact,theinfinitesimalincrementofBrownianmotion,thelimitofB(t+h)=B(t)ashapproachestoaninfinitesimaloftime(dt)hasearnedthenotationdB(t)andithasbecomeafundamentalbuildingblockforc

8、onstructingothercontinuoustimeprocess.Itiscalledwhitenoise.ForP(t)defineearlierwehavedP(t)=,dt+,dB(t).Thisiscalledstochasticdifferentialequation.ThenaturaltransformationdP(t)/dt=,+,dB(t)/dtdoesn,tmalesensebecausedB(t)/dtisanotwelldefined,(althroughdB(t)is).,ThemomentsofdB(t):,EdB(t)=0,VardB(t)=dt,Ed

9、BdB=dt,VardBdB=o(dt),EdBdt=0,VardBdt=o(dt),Ifwetreattermsoforderofo(dt)asessentiallyzero,the(dB),2,anddBdtarebothnon-stochasticvariables.,|dBdt,dB|dt0,dt|00,Us,ingthaboverulewecancalculate(dP),2,=,2,dt.Itisnotarandomvariable!,GeometricBrownianmotion,IfthearithmeticBrownianmotionP(t)istakentobethepri

10、ceofsomeasset,thepricemaybenegative.Thepriceprocessp(t)=exp(P(t),whereP(t)isthearithmeticBrownianmotion,iscalledgeometricBrownianmotionorlognormaldiffusion.,ItosLemma,AlthoughthefirstcompletemathematicaltheoryofBrownianmotionisduetoWiener(1923),itistheseminalcontributionofIto(1951)thatislargelyrespo

11、nsiblefortheenormousnumberofapplicationsofBrownianmotiontoproblemsinmathematics,statistics,physics,chemistry,biology,engineering,andofcourse,financialeconomics.Inparticular,ItoconstructsabroadclassofcontinuoustimestochasticprocessbasedonBrownianmotion,nowknownasItoprocessorItostochasticdifferentiale

12、quations,whichisclosedundergeneralnon-lineartransformation.,Ito(1951)provides aformula,Itos lemma forcalculatingexplicitly thestochastic differentialequationthat governsthe dynamics of f(P,t):,df(P,t)=,f/,P dP+,f/,t dt+,2,f/,P,2,(dP),2,ApplicationsinFinance,A lognormaldistributionfor stock price ret

13、urnsisthe standard model usedinfinancial economics.Givensomereasonable assumptions about therandombehaviorofstockreturns,alognormaldistribution is implied.These assumptions willcharacterize lognomal distributionina veryintuitive manner.,Let S(t)be thestocks priceat date t.We subdividedthe time horiz

14、on 0T into nequally spacedsubintervals oflength h.We writeS(ih)as S(i),i=0,1,n.Letz(i)be the continuous compounded rate of return over(i-1)h ih,ieS(i)=S(i-1)exp(z(i),i=1,2,.,n.It isclear that S(i)=S(0)expz(1)+z(2)+,+z(i).,The continuouscompoundedreturn onthestockovertheperiod 0T isthesum of theconti

15、nuously compoundedreturns over the n subintervals.,AssumptionA1.Thereturns z(j)are i.i.d.,AssumptionA2.Ez(t)=,h,where,is the expectedcontinuously compoundedreturn perunittime.,AssumptionA3.varz(t)=,2,h.,Technically,these assumptionsensure that asthetimedecrease proportionally,the behavior ofthedistr

16、ibution for S(t)dose notexplode nor degenerate to a fixedpoint.,Assumption1-3implies that for anyinfinitesimaltimesubintervals,the distributionforthe continuously compounded returnz(t)has anormal distributionwithmean,h,and variance,2,h.This impliesthatS(t)is lognormallydistributed.,Lognormaldistribution,At time t t+h,lnS,t+h,lnS,t,+(,-,2,/2)h,h,0.5,where,(m,s)denotes anormal distributionwithmeanm and standarddeviations.,Continuously compounded return,ln(S,t+h,/S,t,),(,-,2,/2)h,h,0.5,Expected ret

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!