《高中數(shù)學(xué) 課時分層作業(yè)12 等差數(shù)列前n項(xiàng)和的綜合應(yīng)用 新人教A版必修5》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 課時分層作業(yè)12 等差數(shù)列前n項(xiàng)和的綜合應(yīng)用 新人教A版必修5(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課時分層作業(yè)(十二)等差數(shù)列前n項(xiàng)和的綜合應(yīng)用(建議用時:40分鐘)學(xué)業(yè)達(dá)標(biāo)練一、選擇題1數(shù)列an為等差數(shù)列,它的前n項(xiàng)和為Sn,若Sn(n1)2,則的值是()A2B1C0 D1B等差數(shù)列前n項(xiàng)和Sn的形式為Snan2bn,1.2已知等差數(shù)列an的前n項(xiàng)和為Sn,若a1a200,且A,B,C三點(diǎn)共線(該直線不過點(diǎn)O),則S200等于() 【導(dǎo)學(xué)號:91432182】A100 B101C200 D201AA、B、C三點(diǎn)共線a1a2001,S200(a1a200)100.3若數(shù)列an的前n項(xiàng)和是Snn24n2,則|a1|a2|a10|等于()A15 B35C66 D100C易得an|a1|1,|a
2、2|1,|a3|1,令an0則2n50,n3.|a1|a2|a10|11a3a102(S10S2)2(1024102)(22422)66.4設(shè)數(shù)列an是等差數(shù)列,若a1a3a5105,a2a4a699,以Sn表示an的前n項(xiàng)和,則使Sn達(dá)到最大值的n是()【導(dǎo)學(xué)號:91432183】A18 B19C20 D21Ca1a3a51053a3,a335,a2a4a6993a4,a433,d2,ana3(n3)d412n,令an0,412n0,n,n20.5.等于()A.B.C.D.C通項(xiàng)an,原式.二、填空題6已知等差數(shù)列an中,Sn為其前n項(xiàng)和,已知S39,a4a5a67,則S9S6_.【導(dǎo)學(xué)號:
3、91432184】5S3,S6S3,S9S6成等差數(shù)列,而S39,S6S3a4a5a67,S9S65.7已知數(shù)列an的前n項(xiàng)和Snn29n,第k項(xiàng)滿足5ak8,則k_.8anan2n10.由52k108,得7.5k0,a1a2a3a4a5a60,a70.故當(dāng)n5或6時,Sn最大三、解答題9已知等差數(shù)列an中,a19,a4a70.(1)求數(shù)列an的通項(xiàng)公式;(2)當(dāng)n為何值時,數(shù)列an的前n項(xiàng)和取得最大值?解(1)由a19,a4a70,得a13da16d0,解得d2,ana1(n1)d112n.(2)法一:a19,d2,Sn9n(2)n210n(n5)225,當(dāng)n5時,Sn取得最大值法二:由(1
4、)知a19,d20,n6時,an0.當(dāng)n5時,Sn取得最大值10若等差數(shù)列an的首項(xiàng)a113,d4,記Tn|a1|a2|an|,求Tn.【導(dǎo)學(xué)號:91432186】解a113,d4,an174n.當(dāng)n4時,Tn|a1|a2|an|a1a2anna1d13n(4)15n2n2;當(dāng)n5時,Tn|a1|a2|an|(a1a2a3a4)(a5a6an)S4(SnS4)2S4Sn2(15n2n2)2n215n56.Tn沖A挑戰(zhàn)練1已知等差數(shù)列an的前n項(xiàng)和為Sn,S440,Sn210,Sn4130,則n()A12 B14C16 D18BSnSn4anan1an2an380,S4a1a2a3a440,所以
5、4(a1an)120,a1an30,由Sn210,得n14.2設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,Sm12,Sm0,Sm13,則m等于()【導(dǎo)學(xué)號:91432187】A3 B4C5 D6CamSmSm12,am1Sm1Sm3,所以公差dam1am1,由Sm0,得a12,所以am2(m1)12,解得m5,故選C.3已知數(shù)列:1,則其前n項(xiàng)和等于_通項(xiàng)an2,所求的和為22.4設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,則這個數(shù)列的中間項(xiàng)是_,項(xiàng)數(shù)是_.【導(dǎo)學(xué)號:91432188】117設(shè)等差數(shù)列an的項(xiàng)數(shù)為2n1,S奇a1a3a2n1(n1)an1,S偶a2a4a6a2nnan1,所
6、以,解得n3,所以項(xiàng)數(shù)2n17,S奇S偶an1,即a4443311為所求中間項(xiàng)5已知數(shù)列an的前n項(xiàng)和為Sn,數(shù)列an為等差數(shù)列,a112,d2.(1)求Sn,并畫出Sn(1n13)的圖象;(2)分別求Sn單調(diào)遞增、單調(diào)遞減的n的取值范圍,并求Sn的最大(或最小)的項(xiàng);(3)Sn有多少項(xiàng)大于零?解(1)Snna1d12n(2)n213n.圖象如圖(2)Snn213n2,nN*,當(dāng)n6或7時,Sn最大;當(dāng)1n6時,Sn單調(diào)遞增;當(dāng)n7時,Sn單調(diào)遞減Sn有最大值,最大項(xiàng)是S6,S7,S6S742.(3)由圖象得Sn中有12項(xiàng)大于零6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375