《六年級下冊數(shù)學 同步拓展第十三講.面積計算全國通用》由會員分享,可在線閱讀,更多相關(guān)《六年級下冊數(shù)學 同步拓展第十三講.面積計算全國通用(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
面積問題(二)
【知識、方法梳理】
對于一些比較復雜的組合圖形,有時直接分解有一定的困難,這時,可以通過把其中的部分圖形進行平移、翻折或旋轉(zhuǎn),化難為易。有些圖形可以根據(jù)“容斥問題“的原理來解答。在圓的半徑r用小學知識無法求出時,可以把“r2”整體地代入面積公式求面積。
【典例精講】
【例題1】如圖所示,求圖中陰影部分的面積。
【思路導航】解法一:陰影部分的一半,
2、可以看做是扇形中減去一個等腰直角三角形(如圖),等腰直角三角形的斜邊等于圓的半徑,斜邊上的高等于斜邊的一半,圓的半徑為202=10厘米
[3.141021/4-10(102)]2=107(平方厘米)
答:陰影部分的面積是107平方厘米。
解法二:以等腰三角形底的中點為中心點。把圖的右半部分向下旋轉(zhuǎn)90度后,陰影部分的面積就變?yōu)閺陌霃綖?0厘米的半圓面積中,減去兩直角邊為10厘米的等腰直角三角形的面積所得的差。
(202)21/2-(202)21/2=107(平方厘米)
答:陰影部分的面積是107平方厘米。
練習1:
1.如圖所示,求陰影部分的面積(單位:厘米)
2.
3、如圖所示,用一張斜邊為29厘米的紅色直角三角形紙片,一張斜邊為49厘米的藍色直角三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形。求紅藍兩張三角形紙片面積之和是多少?
【例題2】如圖所示,求圖中陰影部分的面積(單位:厘米)。
【思路導航】解法一:先用長方形的面積減去小扇形的面積,得空白部分(a)的面積,再用大扇形的面積減去空白部分(a)的面積。如圖所示。
3.14621/4-(64-3.14421/4)=16.82(平方厘米)
解法二:把陰影部分看作(1)和(2)兩部分如圖20-8所示。把大、小兩個扇形面積相加,剛好多計算了空白部分和陰影(1)的面
4、積,即長方形的面積。
3.14421/4+3.14621/4-46=16.28(平方厘米)
答:陰影部分的面積是16.82平方厘米。
練習2:
1.如圖所示,△ABC是等腰直角三角形,求陰影部分的面積(單位:厘米)。
2.如圖所示,三角形ABC是直角三角形,AC長4厘米,BC長2厘米。以AC、BC為直徑畫半圓,兩個半圓的交點在AB邊上。求圖中陰影部分的面積。
3.如圖所示,圖中平行四邊形的一個角為600,兩條邊的長分別為6厘米和8厘米,高為5.2厘米。求圖中陰影部分的面積。
【例題3】在圖中,正方形的邊長是10厘米
5、,求圖中陰影部分的面積。
【思路導航】解法一:先用正方形的面積減去一個整圓的面積,得空部分的一半(如圖所示),再用正方形的面積減去全部空白部分。
空白部分的一半:1010-(102)23.14=21.5(平方厘米)
陰影部分的面積:1010-21.52=57(平方厘米)
解法二:把圖中8個扇形的面積加在一起,正好多算了一個正方形(如圖所示),而8個扇形的面積又正好等于兩個整圓的面積。
(102)23.142-1010=57(平方厘米)
答:陰影部分的面積是57平方厘米。
練習3:
1.求下面各圖形中陰影部分的面積(單位:厘米)。
2.求下面各圖形中
6、陰影部分的面積(單位:厘米)。
3.求下面各圖形中陰影部分的面積(單位:厘米)。
【例題4】在正方形ABCD中,AC=6厘米。求陰影部分的面積。
【思路導航】這道題的難點在于正方形的邊長未知,這樣扇形的半徑也就不知道。但我們可以看出,AC是等腰直角三角形ACD的斜邊。根據(jù)等腰直角三角形的對稱性可知,斜邊上的高等于斜邊的一半(如圖所示),我們可以求出等腰直角三角形ACD的面積,進而求出正方形ABCD的面積,即扇形半徑的平方。這樣雖然半徑未求出,但可以求出半徑的平方,也可以把半徑的平方直接代入圓面積公式計算。
既是正方形的面積,又是半徑的平方為:6(62)2
7、=18(平方厘米)
陰影部分的面積為:18-183.144=3.87(平方厘米)
答:陰影部分的面積是3.87平方厘米。
練習4:
1.如圖所示,圖形中正方形的面積是50平方厘米,分別求出每個圖形中陰影部分的面積。
2.如圖所示,圖形中正方形的面積是50平方厘米,分別求出每個圖形中陰影部分的面積。
3.如圖所示,正方形中對角線長10厘米,過正方形兩個相對的頂點以其邊長為半徑分別做弧。求圖形中陰影部分的面積(試一試,你能想出幾種辦法)。
【例題5】在圖的扇形中,正方形的面積是30平方厘米。求陰影部分的面積。
【思路導航】陰影部分的面積等于扇形的面積
8、減去正方形的面積??墒巧刃蔚陌霃轿粗?,又無法求出,所以我們尋求正方形的面積與扇形面積的半徑之間的關(guān)系。我們以扇形的半徑為邊長做一個新的正方形(如圖所示),從圖中可以看出,新正方形的面積是302=60平方厘米,即扇形半徑的平方等于60。這樣雖然半徑未求出,但能求出半徑的平方,再把半徑的平等直接代入公式計算。
3.14(302)1/4-30=17.1(平方厘米)
答:陰影部分的面積是17.1平方厘米。
練習5:
1.如圖所示,平行四邊形的面積是100平方厘米,求陰影部分的面積。
2.如圖所示,O是小圓的圓心,CO垂直于AB,三角形ABC的面積是45平方厘米,求
9、陰影部分的面積。
3.如圖所示,半圓的面積是62.8平方厘米,求陰影部分的面積。
“教書先生”恐怕是市井百姓最為熟悉的一種稱呼,從最初的門館、私塾到晚清的學堂,“教書先生”那一行當怎么說也算是讓國人景仰甚或敬畏的一種社會職業(yè)。只是更早的“先生”概念并非源于教書,最初出現(xiàn)的“先生”一詞也并非有傳授知識那般的含義?!睹献印分械摹跋壬螢槌龃搜砸??”;《論語》中的“有酒食,先生饌”;《國策》中的“先生坐,何至于此?”等等,均指“先生”為父兄或有學問、有德行的長輩。其實《國策》中本身就有“先生長者,有德之稱”的說法??梢姟跋壬敝夥钦嬲摹敖處煛敝?,倒是與當今“先生”的
10、稱呼更接近??磥恚跋壬敝驹春x在于禮貌和尊稱,并非具學問者的專稱。稱“老師”為“先生”的記載,首見于《禮記?曲禮》,有“從于先生,不越禮而與人言”,其中之“先生”意為“年長、資深之傳授知識者”,與教師、老師之意基本一致。
其實,任何一門學科都離不開死記硬背,關(guān)鍵是記憶有技巧,“死記”之后會“活用”。不記住那些基礎(chǔ)知識,怎么會向高層次進軍?尤其是語文學科涉獵的范圍很廣,要真正提高學生的寫作水平,單靠分析文章的寫作技巧是遠遠不夠的,必須從基礎(chǔ)知識抓起,每天擠一點時間讓學生“死記”名篇佳句、名言警句,以及豐富的詞語、新穎的材料等。這樣,就會在有限的時間、空間里給學生的腦海里注入無限的內(nèi)容。日積月累,積少成多,從而收到水滴石穿,繩鋸木斷的功效。
這個工作可讓學生分組負責收集整理,登在小黑板上,每周一換。要求學生抽空抄錄并且閱讀成誦。其目的在于擴大學生的知識面,引導學生關(guān)注社會,熱愛生活,所以內(nèi)容要盡量廣泛一些,可以分為人生、價值、理想、學習、成長、責任、友誼、愛心、探索、環(huán)保等多方面。如此下去,除假期外,一年便可以積累40多則材料。如果學生的腦海里有了眾多的鮮活生動的材料,寫起文章來還用亂翻參考書嗎?