《江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第2部分 八大難點(diǎn)突破 難點(diǎn)2 立體幾何中的探索性與存在性問題 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《江蘇高考數(shù)學(xué)二輪復(fù)習(xí)教師用書:第2部分 八大難點(diǎn)突破 難點(diǎn)2 立體幾何中的探索性與存在性問題 Word版含答案(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、高考數(shù)學(xué)精品復(fù)習(xí)資料 2019.5難點(diǎn)二立體幾何中的探索性與存在性問題(對(duì)應(yīng)學(xué)生用書第65頁(yè))數(shù)學(xué)科考試大綱指出,通過考試,讓學(xué)生提高多種能力,其中空間想象能力是對(duì)空間形式的觀察、分析、抽象的能力要在立體幾何學(xué)習(xí)中形成立體幾何中的探索性與存在性問題實(shí)質(zhì)是對(duì)線面平行與垂直性質(zhì)定理的考查探究性與存在性問題常常是條件不完備的情況下探討某些結(jié)論能否成立,立體幾何中的探究性與存在性問題既能夠考查學(xué)生的空間想象能力,又可以考查學(xué)生的意志力及探究的能力1對(duì)命題條件的探索探索條件,即探索能使結(jié)論成立的條件是什么對(duì)命題條件的探索常采用以下三種方法:(1)先猜后證,即先觀察與嘗試給出條件再給出證明;(2)先通過命
2、題成立的必要條件探索出命題成立的條件,再證明充分性;(3)把幾何問題轉(zhuǎn)化為代數(shù)問題,探索出命題成立的條件【例1】如圖1,在四棱錐PABCD中,ADBC,ADCPAB90,BCCDAD,E為棱AD的中點(diǎn),異面直線PA與CD所成的角為90.在平面PAB內(nèi)找一點(diǎn)M,使得直線CM平面PBE,并說(shuō)明理由. 【導(dǎo)學(xué)號(hào):56394092】圖1解在梯形ABCD中,AB與CD不平行如圖,延長(zhǎng)AB,DC,相交于點(diǎn)M(M平面PAB),點(diǎn)M即為所求的一個(gè)點(diǎn)理由如下:由已知,知BCED,且BCED,所以四邊形BCDE是平行四邊形,從而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(說(shuō)明:延長(zhǎng)AP至點(diǎn)N
3、,使得APPN,則所找的點(diǎn)可以是直線MN上任意一點(diǎn))思路分析證明線面垂直的方法:一是線面垂直的判定定理;二是利用面面垂直的性質(zhì)定理;三是平行線法(若兩條平行線中的一條垂直于這個(gè)平面,則另一條也垂直于這個(gè)平面解題時(shí),注意線線、線面與面面關(guān)系的相互轉(zhuǎn)化;(2)證明線面平行常用方法:一是利用線面平行的判定定理,二是利用面面平行的性質(zhì)定理,三是利用面面平行的性質(zhì);(3)證明兩個(gè)平面垂直,首先考慮直線與平面垂直,也可以簡(jiǎn)單記為“證面面垂直,找線面垂直”,是化歸思想的體現(xiàn),這種思想方法與空間中的平行關(guān)系的證明類似,掌握化歸與轉(zhuǎn)化思想方法是解決這類題的關(guān)鍵點(diǎn)評(píng)這類探索性題型通常是找命題成立的一個(gè)充分條件,所
4、以解這類題采用下列二種方法:(1)通過各種探索嘗試給出條件;(2)找出命題成立的必要條件,也證明充分性2對(duì)命題結(jié)論的探索探索結(jié)論,即在給定的條件下命題的結(jié)論是什么對(duì)命題結(jié)論的探索,常從條件出發(fā),探索出要求的結(jié)論是什么,另外還有探索的結(jié)論是否存在求解時(shí),常假設(shè)結(jié)論存在,再尋找與條件相容還是矛盾的結(jié)論【例2】如圖2,在四棱錐PABCD中,PC平面ABCD,ABDC,DCAC.圖2(1)求證:DC平面PAC;(2)求證:平面PAB平面PAC;(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA平面CEF?說(shuō)明理由解(1)證明:因?yàn)镻C平面ABCD,所以PCDC.又因?yàn)镈CAC,且PCACC,所
5、以DC平面PAC.(2)證明:因?yàn)锳BDC,DCAC,所以ABAC.因?yàn)镻C平面ABCD,所以PCAB.又因?yàn)镻CACC,所以AB平面PAC.又AB平面PAB,所以平面PAB平面PAC.(3)棱PB上存在點(diǎn)F,使得PA平面CEF.理由如下:取PB的中點(diǎn)F,連接EF,CE,CF.又因?yàn)镋為AB的中點(diǎn),所以EFPA.又因?yàn)镻A平面CEF,且EF平面CEF,所以PA平面CEF.點(diǎn)評(píng)對(duì)于立體幾何的探索性與存在性問題一般都是條件開放性的探究問題,采用的方法一般是執(zhí)果索因的方法,假設(shè)求解的結(jié)果存在,尋找使這個(gè)結(jié)論成立的充分條件,運(yùn)用方程的思想或向量的方法轉(zhuǎn)化為代數(shù)的問題解決如果找到了符合題目結(jié)果要求的條件,則存在;如果找不到符合題目結(jié)果要求的條件,或出現(xiàn)了矛盾,則不存在