新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案

上傳人:仙*** 文檔編號(hào):42620458 上傳時(shí)間:2021-11-27 格式:DOC 頁(yè)數(shù):16 大?。?50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案_第1頁(yè)
第1頁(yè) / 共16頁(yè)
新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案_第2頁(yè)
第2頁(yè) / 共16頁(yè)
新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案_第3頁(yè)
第3頁(yè) / 共16頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《新編數(shù)學(xué)學(xué)案同步精致講義選修21北師大版:第二章 空間向量與立體幾何 167;2 空間向量的運(yùn)算二 Word版含答案(16頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、新編數(shù)學(xué)北師大版精品資料§2空間向量的運(yùn)算(二)學(xué)習(xí)目標(biāo)1.掌握兩個(gè)向量的數(shù)量積的概念、性質(zhì)、計(jì)算與運(yùn)算律.2.掌握兩個(gè)向量的數(shù)量積在判斷向量共線與垂直中的應(yīng)用知識(shí)點(diǎn)數(shù)量積的概念及運(yùn)算律1已知兩個(gè)非零向量a,b,則|a|b|cosa,b叫作a,b的數(shù)量積,記作a·b,即a·b|a|b|cosa,b2空間向量數(shù)量積的性質(zhì)(1)aba·b0.(2)|a|2a·a,|a|.(3)cosa,b.3空間向量數(shù)量積的運(yùn)算律(1)(a)·b(a·b)(R)(2)a·bb·a(交換律)(3)a·(bc)a

2、83;ba·c(分配律)特別提醒:不滿足結(jié)合律(a·b)·ca·(b·c)1對(duì)于非零向量b,由a·bb·c,可得ac.(×)2對(duì)于向量a,b,c,有(a·b)·ca·(b·c)(×)3若非零向量a,b為共線且同向的向量,則a·b|a|b|.()4對(duì)任意向量a,b,滿足|a·b|a|b|.()類型一數(shù)量積的計(jì)算例1如圖所示,在棱長(zhǎng)為1的正四面體ABCD中,E,F(xiàn)分別是AB,AD的中點(diǎn),求:(1)·;(2)·;(3)·;

3、(4)·.考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)用定義求數(shù)量積解(1)··|cos,cos 60°.(2)··|2.(3)··|cos,cos 120°.(4)··()··|cos,|cos,cos 60°cos 60°0.反思與感悟(1)已知a,b的模及a與b的夾角,直接代入數(shù)量積公式計(jì)算(2)如果要求的是關(guān)于a與b的多項(xiàng)式形式的數(shù)量積,可以先利用數(shù)量積的運(yùn)算律將多項(xiàng)式展開,再利用a·a|a|2及數(shù)量積公式進(jìn)行計(jì)算跟蹤訓(xùn)練1已知在長(zhǎng)方體A

4、BCDA1B1C1D1中,ABAA12,AD4,E為側(cè)面AB1的中心,F(xiàn)為A1D1的中點(diǎn)試計(jì)算:(1)·;(2)·;(3)·.考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)用定義求數(shù)量積解如圖,設(shè)a,b,c,則|a|c|2,|b|4,a·bb·cc·a0.(1)·b·|b|24216.(2)··(ac)|c|2|a|222220.(3)··(abc)·|a|2|b|22.類型二利用數(shù)量積證明垂直問題例2(1)已知空間四邊形ABCD中,ABCD,ACBD,那么AD與BC的位置關(guān)系

5、為_(填“平行”“垂直”)考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用答案垂直解析·()·()··2··()·0,AD與BC垂直(2)如圖所示,在正方體ABCDA1B1C1D1中,O為AC與BD的交點(diǎn),G為CC1的中點(diǎn),求證:A1O平面GBD.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用證明設(shè)a,b,c,則a·b0,b·c0,a·c0,|a|b|c|.()cab,ba,()abc··(ba)c·bc·aa·ba2b2b·a(b2a2)(

6、|b|2|a|2)0.于是,即A1OBD.同理可證,即A1OOG.又OGBDO,OG?平面GBD,BD?平面CBD,A1O平面GBD.反思與感悟(1)證明線線垂直的方法證明線線垂直的關(guān)鍵是確定直線的方向向量,根據(jù)方向向量的數(shù)量積是否為0來判斷兩直線是否垂直(2)證明與空間向量a,b,c有關(guān)的向量m,n垂直的方法先用向量a,b,c表示向量m,n,再判斷向量m,n的數(shù)量積是否為0.跟蹤訓(xùn)練2如圖,在空間四邊形OACB中,OBOC,ABAC,求證:OABC.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用證明因?yàn)镺BOC,ABAC,OAOA,所以O(shè)ACOAB,所以AOCAOB.又··

7、()··|cosAOC|·|cosAOB0,所以,即OABC.類型三利用數(shù)量積解決空間角或兩點(diǎn)間的距離問題命題角度1解決角度問題例3在空間四邊形OABC中,連接AC,OB,OA8,AB6,AC4,BC5,OAC45°,OAB60°,求向量與BC所成角的余弦值考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角解,···|cos,|cos,8×4×cos135°8×6×cos120°2416,cos,.反思與感悟求兩個(gè)空間向量a,b夾角的方法類同平面內(nèi)兩向量夾角的求法

8、,利用公式cosa,b,在具體的幾何體中求兩向量的夾角時(shí),可把其中一個(gè)向量的起點(diǎn)平移至與另一個(gè)向量的起點(diǎn)重合,轉(zhuǎn)化為求平面中的角度大小問題跟蹤訓(xùn)練3如圖所示,在正方體ABCDA1B1C1D1中,求異面直線A1B與AC所成的角考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求解解不妨設(shè)正方體的棱長(zhǎng)為1,設(shè)a,b,c,則|a|b|c|1,a·bb·cc·a0,ac,ab.·(ac)·(ab)|a|2a·ba·cb·c1,而|,cos,0°,180°,60°.又異面直線所成角的范圍是(0°,

9、90°,因此,異面直線A1B與AC所成的角為60°.命題角度2求空間中的兩點(diǎn)間的距離例4如圖,正三棱柱(底面是正三角形的直三棱柱)ABCA1B1C1的各棱長(zhǎng)都為2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),求EF的長(zhǎng)考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求線段長(zhǎng)解設(shè)a,b,c.由題意,知|a|b|c|2,且a,b60°,a,cb,c90°.因?yàn)閍bc,所以|22a2b2c22×22×22222××2×2cos 60°11415,所以|,即EF.反思與感悟求解距離問題時(shí),先選擇以兩點(diǎn)為端點(diǎn)的向量,將此向量

10、表示為幾個(gè)向量和的形式,求出這幾個(gè)已知向量的兩兩之間的夾角以及它們的模,利用公式|a|求解即可跟蹤訓(xùn)練4在平行六面體ABCDA1B1C1D1中,AB1,AD2,AA13,BAD90°,BAA1DAA160°,求AC1的長(zhǎng)考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求線段長(zhǎng)解因?yàn)?,所?)2222(···)因?yàn)锽AD90°,BAA1DAA160°,所以1492×(1×3×cos 60°2×3×cos 60°)23.因?yàn)閨2,所以|223,則|,即AC1.1對(duì)于向量

11、a,b,c和實(shí)數(shù),下列說法正確的是()A若a·b0,則a0或b0B若a0,則0或a0C若a2b2,則ab或abD若a·ba·c,則bc考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)數(shù)量積的性質(zhì)答案B解析結(jié)合向量的運(yùn)算,只有B正確2已知向量a,b是平面內(nèi)的兩個(gè)不相等的非零向量,非零向量c是直線l的一個(gè)方向向量,則“c·a0且c·b0”是“l(fā)”的()A充分不必要條件B必要不充分條件C充要條件D既不充分又不必要條件考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用答案B解析若ab,則不一定得到l,反之成立3已知|a|2,|b|3,a,b60°,則|2a3b|

12、等于()A.B97C.D61考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求線段長(zhǎng)答案C解析|2a3b|24a212a·b9b24×2212×2×3×cos60°9×3261,|2a3b|.4已知a,b為兩個(gè)非零空間向量,若|a|2,|b|,a·b,則a,b_.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角答案解析cosa,b,a,b0,a,b.5已知正四面體ABCD的棱長(zhǎng)為2,E,F(xiàn)分別為BC,AD的中點(diǎn),則EF的長(zhǎng)為_考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求線段長(zhǎng)答案解析|22()22222(··

13、83;)1222122×(1×2×cos120°02×1×cos120°)2,|,EF的長(zhǎng)為.1空間向量運(yùn)算的兩種方法(1)利用定義:利用a·b|a|b|cosa,b并結(jié)合運(yùn)算律進(jìn)行計(jì)算(2)利用圖形:計(jì)算兩個(gè)數(shù)量的數(shù)量積,可先將各向量移到同一頂點(diǎn),利用圖形尋找夾角,再代入數(shù)量積公式進(jìn)行運(yùn)算2在幾何體中求空間向量數(shù)量積的步驟(1)首先將各向量分解成已知模和夾角的向量的組合形式(2)利用向量的運(yùn)算律將數(shù)量積展開,轉(zhuǎn)化為已知模和夾角的向量的數(shù)量積(3)代入a·b|a|b|cosa,b求解一、選擇題1已知非零向

14、量a,b不平行,并且其模相等,則ab與ab之間的關(guān)系是()A垂直B共線C不垂直D以上都可能考點(diǎn)空間向量數(shù)量積的概念與性質(zhì)題點(diǎn)數(shù)量積的性質(zhì)答案A解析由題意知|a|b|,(ab)·(ab)|a|2|b|20,(ab)(ab)2已知向量a,b滿足條件:|a|2,|b|,且a與2ba互相垂直,則a,b等于()A30°B45°C60°D90°考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角答案B解析根據(jù)a·(2ba)0,即2a·b|a|24,解得a·b2,又cosa,b,又a,b0°,180°,a,b45

15、76;,故選B.3若向量m垂直于向量a和b,向量nab(,R且,0),則()AmnBmnCm不平行于n,m也不垂直于nD以上三種情況都有可能考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用答案B4設(shè)平面上有四個(gè)互異的點(diǎn)A,B,C,D,已知(2)·()0,則ABC一定是()A直角三角形B等腰三角形C等腰直角三角形D等邊三角形考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)用定義求數(shù)量積答案B解析由(2)·()()·()()·()|2|20,得|,故ABC為等腰三角形5已知a,b,c是兩兩垂直的單位向量,則|a2b3c|等于()A14B.C4D2考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利

16、用數(shù)量積求線段長(zhǎng)答案B解析|a2b3c|2|a|24|b|29|c|24a·b6a·c12b·c14,|a2b3c|.6在長(zhǎng)方體ABCDA1B1C1D1中,下列向量的數(shù)量積一定不為0的是()A.·B.·C.·D.·考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)數(shù)量積的性質(zhì)答案D解析選項(xiàng)A,當(dāng)四邊形ADD1A1為正方形時(shí),可得AD1A1D,而A1DB1C,所以AD1B1C,此時(shí)有·0;選項(xiàng)B,當(dāng)四邊形ABCD為正方形時(shí),可得ACBD,又ACBB1,BDBB1B,可得AC平面BB1D1D,故有ACBD1,此時(shí)·0;選項(xiàng)C

17、,由長(zhǎng)方體的性質(zhì)可得AB平面ADD1A1,所以ABAD1,所以·0,故選D.7在正方體ABCDA1B1C1D1中,有下列命題:()232;·()0;與的夾角為60°.其中真命題的個(gè)數(shù)為()A1B2C3D0考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)數(shù)量積的性質(zhì)答案B解析正確;與的夾角為120°,不正確,故選B.二、填空題8已知正方體ABCDA1B1C1D1的棱長(zhǎng)為a,則·_.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用答案a2解析如圖,·()·()···|2000a2a2.9已知空間向量a,b,|a|3,

18、|b|5,mab,nab,a,b135°,若mn,則的值為_考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)數(shù)量積的綜合應(yīng)用答案解析由題意知a·b|a|b|cosa,b3×5×15,由mn,得(ab)·(ab)0,即|a|2a·ba·b|b|21815(1)250.解得.10已知a,b是空間兩個(gè)向量,若|a|2,|b|2,|ab|,則cosa,b_.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角答案解析將|ab|化為(ab)27,求得a·b,再由a·b|a|b|cosa,b,求得cosa,b.11已知a,b均為單位向量,它們的夾

19、角為60°,那么|a3b|_.考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求線段長(zhǎng)答案解析|a3b|2(a3b)2a26a·b9b216×cos60°913,|a3b|.三、解答題12如圖,在直三棱柱ABCABC中,ACBCAA,ACB90°,D,E分別為棱AB,BB的中點(diǎn)(1)求證:CEAD;(2)求異面直線CE與AC所成角的余弦值考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角(1)證明設(shè)a,b,c,根據(jù)題意得|a|b|c|,且a·bb·cc·a0,bc,cba,·c2b20,即CEAD.(2)ac,|a|,|a

20、|,·(ac)·c2|a|2,cos,即異面直線CE與AC所成角的余弦值為.13等邊ABC中,P在線段AB上,且,若··,則實(shí)數(shù)的值為_考點(diǎn)空間向量數(shù)量積的概念及性質(zhì)題點(diǎn)空間向量數(shù)量積定義答案1解析如圖,故·()·|2|cos A,·()·(1)(1)|2,設(shè)|a(a0),則a2a2(1)a2,解得1.四、探究與拓展14已知BB1平面ABC,且ABC是B90°的等腰直角三角形,平行四邊形ABB1A1,平行四邊形BB1C1C的對(duì)角線都分別相互垂直且相等,若ABa,則異面直線BA1與AC所成的角為_考點(diǎn)空間向量數(shù)量積的應(yīng)用題點(diǎn)利用數(shù)量積求角答案60°解析如圖所示,·()·()····.ABBC,BB1AB,BB1BC,·0,·0,·0且·a2.·a2.又·|cos,cos,.又,0°,180°,120°,又異面直線所成的角是銳角或直角,異面直線BA1與AC所成的角為60°.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!