高二數(shù)學(xué)同步測試3

上傳人:燈火****19 文檔編號:42682658 上傳時間:2021-11-27 格式:DOCX 頁數(shù):20 大?。?2.12KB
收藏 版權(quán)申訴 舉報 下載
高二數(shù)學(xué)同步測試3_第1頁
第1頁 / 共20頁
高二數(shù)學(xué)同步測試3_第2頁
第2頁 / 共20頁
高二數(shù)學(xué)同步測試3_第3頁
第3頁 / 共20頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高二數(shù)學(xué)同步測試3》由會員分享,可在線閱讀,更多相關(guān)《高二數(shù)學(xué)同步測試3(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) 新課標(biāo)高二數(shù)學(xué)同步測試( 3)— (2-1 第二章 2.4-2.5) 說明:本試卷分第一卷和第二卷兩部分,第一卷 74 分,第二卷 76 分,共 150 分;答題 時間 120 分鐘. 一、選擇題:在每小題給出的四個選項中,只有一項是符合題目要求的,請把正確答案的代 號填在題后的括號內(nèi) (每小題 5 分,共 50 分). 1. x= 1 3y 2 表示的曲線是

2、 ( ) A .雙曲線 B.橢圓 C.雙曲線的一部分 D.橢圓的一部分 x 2 y 2 2.設(shè)雙曲線 a 2 b2 =1( 0< a< b=的半焦距為 c,直線 l 過( a,0),(0, b)兩點 .已知原 點到直線 l 的距離為 3 ( ) c,則雙曲線的離心率為 4

3、A . 2 B . 3 C. 2 D. 2 3 3 3.中心在原點,焦點坐標(biāo)為 (0, 5 2 ) 的橢圓被直線 3x- y- 2=0 截得的弦的中點的橫坐標(biāo) 為 1 ,則橢圓方程為 ( ) 2 A . 2x 2 + 2y2 =1 B . 2x 2 + 2y2 =1 C. x 2 + y2 =1 D. x2 + x2 =1

4、 25 75 75 25 25 75 75 25 4.過雙曲線 x 2 y 2 1的右焦點 F 作直線 l 交雙曲線于 A、 B 兩點,若| AB |=4,則 2 這樣的直線 l 有 ( ) A . 1 條 B . 2 條 C. 3 條 D. 4 條 x2 y 2 5.過橢圓 a2 + b2 =1( 0<

5、b

6、 a2 2 A . (0, 6 )∪ ( 17 ,∞ ) B. ( 17 ,∞ ) C. [ 6 , 17 ] D.( 6 , 17 ) 7.以橢圓的右焦點 2 為圓心的圓恰好過橢圓的中心,交橢圓于點 M、 N,橢圓的左焦點為 F F 1,且直線 MF 1 與此圓相切,則橢圓的離心率 e為 ( ) 2 3 C .2-

7、 3 D. 3 -1 A . B . 2 2 1 2 1 2 平分線的 8.已知 F , F 是雙曲線的兩個焦點 , Q 是雙曲線上任意一點 , 從某一焦點引∠ F QF 垂線 , 垂足為 P, 則點 P 的軌跡是 ( ) A .直線 B .圓 C.橢圓 D.雙曲線 9.已知拋物線 y=2x2 上兩點 A(

8、x1,y1), B( x2,y2)關(guān)于直線 y=x+m 對稱 , 且 x1 x2=- 1 , 那么 m 的 2 值等于 ( ) 5 3 C. 2 D. 3 A . B . 2 2 2 02 10.對于拋物線 0 0 0 0 0 C: y =4x, 我們稱滿足 y <4

9、x 的點 M( x , y ) 在拋物線的內(nèi)部 , 若點 M( x , y ) 在拋物線的內(nèi)部 , 則直線 l: y0y=2( x+ x0)與 C ( ) A .恰有一個公共點 B.恰有二個公共點 C.有一個公共點也可能有二個公共點 D.沒有公共點 二、填空題:請把答案填在題中橫線上 (每小題 6 分,共 24 分). 11.橢圓 x2+ 4y2= 4 長軸上一個頂點為 A,以 A 為直角頂點作一個內(nèi)接于橢圓的等腰直角三 角形,該三角形的

10、面積是 . 12.設(shè) P 為雙曲線 x 2 y2= 1 上一動點, O 為坐標(biāo)原點, M 為線段 OP 的中點,則點 M 的 4 軌跡方程是 . 13.定長為 l (l> 2b2 a )的線段 AB 的端點在雙曲線 b2x2- a2y2=a2b2 的右支上 , 則 AB 中點 M 的 橫

11、坐標(biāo)的最小值為 14.如果過兩點 A(a,0) 和 B(0,a) 的直線與拋物線 y x2 2x 3 沒有交點,那么實數(shù) a 的 取值范圍是 _____________ . 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) 三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟 (共 76 分). 2 A 、B 及一個定點 0 0 15.( 12 分)已知拋物線

12、y =8x 上兩個動點 M( x , y ),F(xiàn) 是拋物線的焦點, 且 |AF|、 |MF| 、 |BF|成等差數(shù)列,線段 AB 的垂直平分線與 x 軸交于一點 N. ( 1)求點 N 的坐標(biāo)(用 x0 表示); ( 2)過點 N 與 MN 垂直的直線交拋物線于 P、 Q 兩點,若 |MN|=4 2 ,求△ MPQ 的面積. x 2 y2 2 3 b) 的直線到原點 16.( 12 分)已知雙曲線 2 b 2 1的離心率 e ,過 A(a,0), B(0, a 3

13、 的距離是 3 . 2 ( 1)求雙曲線的方程; ( 2)已知直線 y kx 5(k 0) 交雙曲線于不同的點 C,D 且 C,D 都在以 B 為圓心 的圓上,求 k 的值 . 17.( 12 分)已知拋物線 y 2 x 的弦 AB 與直線 y=1 有公共點,且弦 AB 的中點 N 到 y 軸的 距離為 1,求弦 AB 長度的最大值,并求此直線 AB 所在的直線的方程.

14、 18.( 12 分)已知拋物線、橢圓和雙曲線都經(jīng)過點 M 1,2 ,它們在 x 軸上有共同焦點,橢圓 和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點. ( 1)求這三條曲線的方程; ( 2)已知動直線 l 過點 P 3,0 ,交拋物線于 A,B 兩點,是否存在垂直于 x 軸的直線 l 被 以 AP 為直徑的圓截得的弦長為定值?若存在,求出 l 的方程;若不存在,說明理由. 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié)

15、 x2 8y 2 =1 ( a> b> 0)的左、右兩個焦點 . 19.( 14 分)設(shè) F1、 F 2 分別為橢圓 C: 2 b2 a ( 1)若橢圓 C 上的點 A(1, 3 )到 F 1 2 兩點的距離之和等于 4,寫出橢圓 C 的方程和焦 、F 2 點坐標(biāo); ( 2)設(shè)點 K 是( 1)中所得橢圓上的動點,求線段 F1K 的中點的軌跡方程; ( 3)已知橢圓具有性質(zhì):若 M、 N 是橢圓 C 上關(guān)于原點對稱的

16、兩個點,點 P 是橢圓上任意 一點,當(dāng)直線 PM、 PN 的斜率都存在,并記為 kPM、 kPN 時,那么 kPM 與 kPN 之積是與點 x2 y 2 1寫出具有類似特性的性質(zhì),并加以證明. P 位置無關(guān)的定值 .試對雙曲線 b a 2 2 20.( 14 分)已知橢圓的中心為坐標(biāo)原點 O,焦點在 x 軸上,斜率為 1 且過橢圓右焦點 F 的 直線交橢圓于 A 、 B 兩點, OA OB 與 a (3, 1) 共線. ( 1)求橢圓的離心率;

17、 ( 2)設(shè) M 為橢圓上任意一點,且 uuuur uuuur uuuuur 2 2 為定值. OM OA OB ( ,R) ,證明 參考答案 一、 1. D;解析: x= 1 3y 2 化為 x2+3y2 =1( x> 0). 2.A ;解析:由已知,直線 l 的方程為 ay+bx- ab=0 ,原點到直線 l 的距離為 3 c,則有 4 夢幻網(wǎng)絡(luò) ( ) ——最大的免費

18、教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) ab 3 c ,又 c2=a2+b2,∴ 4ab= 3 c2,兩邊平方,得 16a2 (c2 -a2) =3c4,兩邊 a 2 b 2 4 4 .而 0< a< b,得 e2= a 2 2 2 同除以 a4,并整理,得 3e4- 16e2+16=0,∴ e2=4 或 e2= a 2 b 1 b 2 3

19、 a > 2,∴ e2 =4.故 e=2 .評述:本題考查點到直線的距離,雙曲線的性質(zhì)以及計算、推理能力 . 難度較大,特別是求出 e 后還須根據(jù) b> a 進行檢驗 . 3. C; 4. C; 5.C; 6.A ;7. D ;8. B; 9. B; 10. D 二、 11. 16 ;解析:原方程可化為 x2 + y2 =1,a2= 4, b2= 1,∴ a= 2, b= 1, c= 3 .當(dāng)?shù)? 25 4

20、 腰直角三角形,設(shè)交點( x,y)( y> 0)可得 2- x= y,代入曲線方程得: y= 4 ∴ S= 1 2y2 5 2 = 16 . 25 12. x2-4y2 =1;解析:設(shè) P(x0, y0)∴ M( x, y),∴ x x0 , y y0 ∴ 2x= x0, 2y= y0 2 2 ∴ 4x2 - 4y2= 1x2- 4y2= 1. 4 13. a(l 2a) ; 2 a 2 b 2

21、14. , 13 ; 4 三、 15.( 1)設(shè) A( x , y )、B( x 、 y ) ,由 |AF|、 |MF| 、 |BF|成等差數(shù)列得 x +x =2x 0 . 1 1 2 2 1 2 得線段 AB 垂直平分線方程: y y1 y2 x1 x2 (x x0 ), 2 y1 y2

22、 令 y=0,得 x=x0+4, 所以 N(x0+4, 0) . ( 2)由 M( x0, y0) , N(x0+4, 0), |MN|=4 2 , 得 x0=2. 由拋物線的對稱性,可設(shè) M 在第一象限,所以 M(2, 4), N(6,0) . 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) 直線 PQ: y=x-6, y x 6, 由 y2 得P(18,12), Q(2, 4),得△ MPQ 的面積是 64.

23、 8x. 16.解:∵( 1) c 2 3 , 原點到直線 AB: x y 1 的距離 a 3 a b d ab ab 3 . . a 2 b 2 c 2 b 1, a 3 . 故所求雙曲線方程為 x 2 y 2 1 . 3 ( 2)把 y kx 5 代入

24、x 2 3 y 2 3 中消去 y,整理得 (1 3k 2 ) x 2 30kx 78 0 . 設(shè) C(x1, y1 ), D (x2 , y2 ), CD 的中點是 E( x0 , y0 ) ,則 x 0 x1 x 2 15 k 2 y 0 kx 0 5 5 2 , 2 1 3 k 1 3 k k BE y 0 1 1 . x 0 k x0 ky0 k 0, 即 15 k 1

25、5 k k 0 , 又 k 0 , k 2 7 1 3 k 2 3 k 2 故所求 k= 7 . 說明:為了求出 k 的值 , 需要通過消元 , 想法設(shè)法建構(gòu) k 的方程 . 17.解:設(shè) A(x1 , y1 ) 、 B(x2 , y2 ) ,中點 N (1, y0 ) 當(dāng) AB 直線的傾斜角 90時, AB 直線方程是 x 1, | AB | 2. (2 分) 當(dāng) AB 直線的傾斜角不為 90時, x1 y

26、12 , x2 y22 相減得 x1 x2 ( y1 y2 )( y1 y2 ) 所以 2 y0k AB 1即 y0 1 ( 4 分) 2k 1 設(shè) AB 直線方程為: y y0 k ( x 1)即 y k( x 1) ,由于弦 AB 與直線 y=1 有公共點, 2k 1 1 k 1

27、 1 故當(dāng) y=1 時, 2k 即 2 1 1 0 k k k 2 2 y 1 k( x 1) 故y 2 y 1 1 0 2k x y 2 k 2k 2 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費

28、課件下載,試題下載,教案下載,論文范文,計劃總結(jié) 所以 y1 y2 1 y1 y2 1 1 , k 2k 2 故 | AB | 1 1 | y1 y2 | (1 1 y 2 ) 2 4y1 y 2 ] (1 1 1 ) k 2 k 2 )[( y1 k 2 )(4 k 2

29、 k 1 , 1 1 ], 1 1 0,4 1 0 2 (0, k 2 k 2 k 2 4 1 1 1 1 4 1 5 k

30、2 k 2 2 | AB | (1 ( ) k 2 )(4 k 2 ) 2 2 故當(dāng) 1 1 4 1 即 k 6 時, | ABmax | 5 k 2 k 2 3 2

31、 18.解:(Ⅰ)設(shè)拋物線方程為 2 2 px p 0 ,將 M 1,2 代入方程得 p 2 , y 拋物線方程為 : y2 4x ; 由題意知橢圓、雙曲線的焦點為 F 1,0 1 , F2 1,0 , c=1 ; 對于橢圓, 2a MF1 MF2 1 2 22 1 2 4 2 2 2 ; 1

32、 1 a 1 2 a2 1 2 2 2 2 3 b2 a2 c2 2 2 2 橢圓方程為: x2 y 2 1

33、 2 2 2 2 2 3 對于雙曲線, 2a MF1 MF2 2 2 2 a 2 1 a 2 3 2 2

34、 b 2 c 2 a 2 2 2 2 雙曲線方程為: x2 y2 1 3 2 2 2 2 2 ( 2)設(shè) AP 的中點為 C , l 的方程為: x a ,以 AP 為直徑的圓交 l 于 D, E 兩點, DE 中點為 H

35、 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) 令 A x1 , y1 , C x13 , y1 2 2 DC 1 AP 1 x1 3 y1 2 2 2 2 CH

36、x1 3 a 1 x1 2a 3 2 2 2 DC 2 2 1 x1 2 1 x1 2a 3 2 DH CH 3y12 a2 4 4 a - 2 x1 3a 當(dāng) 時, 2 為定值 ; a DH

37、4 6 2 2 DE 2 DH 2 2為定值 此時 l 的方程為: x 2 19.解:( 1)橢圓 C 的焦點在 x 軸上,由橢圓上的點 A 到 F 、F 兩點的距離之和是 4,得 1 2 3 )在橢圓上,因此 1 ( 3 )2 2a=4,

38、即 a=2. 又點 A(1, 2 =1 得 b2=3,于是 c2=1. 2 22 b2 所以橢圓 C 的方程為 x2 y2 1 2 ( 1, 0) . =1,焦點 F (- 1, 0), F 4 3 ( 2)設(shè)橢圓 C 上的動點為 K( x1, y1),線段 F1K 的中點 Q( x, y)滿足: x 1 x1 , y y1 , 即 x1=2x+1,y1 =2y. 2

39、 2 因此 (2x 1) 2 (2 y)2 =1. 即 ( x 1) 2 4 y 2 1為所求的軌跡方程 . 4 3 2 3 ( 3)類似的性質(zhì)為:若 M、N 是雙曲線: x2 y 2 =1 上關(guān)于原點對稱的兩個點,點 P 是雙 a 2 b 2 曲線上任意一點,當(dāng)直線 PM、PN 的斜率都存在,并記為 kPM、 kPN 時,那么 kPM 與 kPN 之積 是與點 P 位置無關(guān)的定值 .

40、 m2 n2 設(shè)點 M 的坐標(biāo)為( m,n),則點 N 的坐標(biāo)為(- m,- n),其中 b2 =1. a 2 又設(shè)點 P 的坐標(biāo)為( x,y),由 kPM y n , kPN y n , x m x m 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) y n y n y 2 n2 2 b

41、2 x 2 2 , n 2 b 2 m2 - b2 代 入 得 得 kPM kPN= x 2 m 2 , 將 y a 2 b a 2 x m x m PM PN b2 k k = a 2 . 評述:本題考查橢圓的基本知識,求動點軌跡的常用方法

42、 .第( 3)問對考生的邏輯思維能力、 分析和解決問題的能力及運算能力都有較高的要求,根據(jù)提供的信息,讓考生通過類比自己找到所證問題,這是高考數(shù)學(xué)命題的方向,應(yīng)引起注意 20.本小題主要考查直線方程、平面向量及橢圓的幾何性質(zhì)等基本知訓(xùn),考查綜合運用數(shù)學(xué)知識解決問題及推理的能力 . ( 1)解:設(shè)橢圓方程為  x2 y  2 1( a b 0), F (c,0), a2 b  2 則直線 AB 的方程為 y x c, 代入 x a  2 y 2 1 2 b 2 化

43、簡得 ( a 2 b 2 ) x 2 2 2 cx a 2 c 2 2 b 2 0 . a a 令 A( x1 , y1 ), B( x2 , y2 ), 則 x1 x2 2a 2 c , x1 x2 a 2c 2 a 2b 2 a 2 b 2 a 2 b 2 .

44、 由OA OB ( x1 x2 , y1 y2 ), a (3, 1), OA OB與a 共線,得 3( y1 y2 ) ( x1 x2 ) 0. 又 y1 x1 c, y2 x2 c, 3( x1 x2 2c) ( x1 x2 ) 0, x1 x2 3c . 2

45、 即 2a2 c 3c , 所以 a 2 3b 2 . c a 2 b 2 6a 2 b2 2 , a 3 故離心率 e c 6 . a 3

46、 ( 2)證明:由( I )知 a2 3b2 ,所以橢圓 x a  2 y 2 1可化為 x 2 3y 2 3b2 . 2 b 2 設(shè)OM ( x, y),由已知得 ( x, y) ( x1 , y1 ) ( x2 , y2 ), 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站 夢幻網(wǎng)絡(luò) ( ) 數(shù)百萬免費課件下載,試題下載,教案下載,論文范文,計劃總結(jié) x x1 x2 , y y1 y2 . M ( x, y) 在橢圓上,

47、 ( x1 x2 ) 2 3( y1 y2 ) 2 3b2 . 即 2 ( 2 3 2 ) 2 ( x 2 3 2 ) 2 ( x1 x2 3 y1 y2 ) 3 2 . ① x1 y1 2 y2 b 由( 1)知 x1 x2 3 c, a 2 3 c2 , b 2 1 c2 . 2 2 2 x1 x2 a 2 c2 a 2b 2 3 c

48、 2 . a2 b2 8 x1 x2 3y1 y2 x1 x2 3( x1 c)( x2 c) 4x1 x2 3( x1 x2 )c 3c 2 3 c 2 9 c2 3c2 2 2 0. 又 x12 3y12 3b2 , x22 3y22 3b 2 又,代入①得 22 1. 故 2 2 為定值,定值為 1. 夢幻網(wǎng)絡(luò) ( ) ——最大的免費教育資源網(wǎng)站

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!