《(參考)《平面向量數(shù)量積》教案》由會員分享,可在線閱讀,更多相關(guān)《(參考)《平面向量數(shù)量積》教案(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、《平面向量數(shù)量積》教學(xué)設(shè)計
案例名稱
平面向量數(shù)量積的設(shè)計
主備人
組員
課時
3課時
一、教材內(nèi)容分析
平面向量數(shù)量積是人教版高一下冊第五章第六節(jié)內(nèi)容,本節(jié)課是以解決某些幾何問題、物理問題等的重要工具。學(xué)習(xí)本節(jié)要掌握好數(shù)量積的定義、公式和性質(zhì),它是考查數(shù)學(xué)能力的一個結(jié)合點,可以構(gòu)建向量模型,解決函數(shù)、三角、數(shù)列、不等式、解析幾何、立體幾何中有關(guān)長度、角度、垂直、平行等問題,因此是高考命題中“在知識網(wǎng)絡(luò)處設(shè)計命題”的重要載體。
二、教學(xué)目標(biāo)(知識,技能,情感態(tài)度、價值觀)
(一)知識與技能目標(biāo)
1、知道平面向量數(shù)量積的定義的產(chǎn)生過程,掌握其定義,了解其幾何意義;
2、
2、能夠由定義探究平面向量數(shù)量積的重要性質(zhì);
3、能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直、共線關(guān)系
(二)過程與方法目標(biāo)
(1)通過物理學(xué)中同學(xué)們已經(jīng)學(xué)習(xí)過的功的概念引導(dǎo)學(xué)生探究出數(shù)量積的定義并由定義探究性質(zhì);
(2)由功的物理意義導(dǎo)出數(shù)量積的幾何意義;
(三)情感、態(tài)度與價值觀目標(biāo)
通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生嘗試數(shù)學(xué)研究的過程,培養(yǎng)學(xué)生發(fā)現(xiàn)、提出、解決數(shù)學(xué)問題的能力,有助于發(fā)展學(xué)生的創(chuàng)新意識。
三、學(xué)習(xí)者特征分析
學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)向量的基本概念和基礎(chǔ)知識,同時也已經(jīng)具備一定的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但在探究問題的
3、能力、合作交流的意識等方面發(fā)展不夠均衡,尚有待加強。
四、教學(xué)策略選擇與設(shè)計
教法:觀察法、討論法、比較法、歸納法、啟發(fā)引導(dǎo)法。
學(xué)法:自主探究、合作交流、歸納總結(jié)。
教師與學(xué)生互動:學(xué)生自主探究,教師引導(dǎo)點撥。
五、教學(xué)環(huán)境及資源準(zhǔn)備
三角尺
六、教學(xué)過程
教學(xué)過程
教師活動
學(xué)生活動
設(shè)計意圖及資源準(zhǔn)備
創(chuàng)
設(shè)
情
景
引
入
新
課
問題1 在物理學(xué)中,我們學(xué)過功的概念,如果給出力的大小和位移的大小能否求出功的大???
師】:提出學(xué)生已學(xué)過的問題設(shè)置疑問,激發(fā)學(xué)生興趣。
【生】:W=FS cos
讓學(xué)生復(fù)習(xí)已學(xué)過
4、的物理知識激發(fā)學(xué)生興趣,并能夠分析此公式的形式。
問題2 在上述公式中的角是誰與誰的夾角?兩向量的夾角是如何定義的?
【師】:提問角從而引出兩向量夾角的定義。
【生】:指出角是力與所發(fā)生的位移的夾角
能夠通過物理學(xué)中功的概念及公式中夾角的定義,從而給出兩向量夾角的定義。
師
生
互
動
探
索
新
知
1
1、 引出兩個向量的夾角的定義
定義:向量夾角的定義:設(shè)兩個非零向量a=OA與b=OB,稱∠AOB=為向量a與b的夾角, (00≤θ≤1800)。
(此概念可由老師用定義的方式向?qū)W生直接接示)
【師】:給出任意兩個向量由學(xué)生作出夾角并通過作圖
5、引導(dǎo)學(xué)生歸納、總結(jié)出兩向量夾角的特征及各種特殊情況。
【生】:學(xué)生作圖,任意兩向量的夾角包括垂直,同向及反向的情況。
注:(1)當(dāng)非零向量a與b同方向時,θ=00
(2)當(dāng)a與b反方向時θ=1800 (共線或平行時)
(3)0與其它非零向量不談夾角問題
(4)a⊥b時θ=900
(5)求兩向量夾角須將兩個向量平移至公共起點
實
際
應(yīng)
用
鞏
固
新
知
1
實際問題我能行
例1 在三角形ABC中,∠ABC=450,BA 與 BC 夾角是多少?BA 與 CB 夾角呢?
【生】:以四人為小組合作、交流。
【師】:引導(dǎo)學(xué)生在實際問題中
6、尤其是三角形中找到兩向量的夾角。
加深對概念的理解,及兩向量夾角的的定義。會找兩向量夾角。
師生互動
探索新知
2
2.?dāng)?shù)量積的定義
師:由功的定義,我們給出數(shù)量積的定義
數(shù)量積的定義:a · b=︱a︱·︱b︱cos, 叫做非零向量a與b的數(shù)量積;
【師】:由功的定義及公式老師直接給出數(shù)量積定義。
【生】:學(xué)生以小組交流數(shù)量積公式與功的定義之間的了解。
通過交流學(xué)生可以加深對數(shù)量積概念的理解,并能強化此公式的記憶。
實際應(yīng)用
鞏固新知
2
例2:已知| a |=3,| b |=6,當(dāng)① a ∥ b ;
② a ⊥ b;③
7、a 與 b 夾角為600時,
分別求 a · b
【生】:小組合作、討論,共同思考解決例2,小組派代表板演完成。
【師】:引導(dǎo)學(xué)生第一問中a ∥ b時夾角是怎樣的,在由學(xué)生獨立完成。之后再出示幻燈片給出完整解答過程。
通過自己先獨立思考并完成,強化學(xué)生對公式的記憶及應(yīng)用。再對照幻燈片中完整的解答過成,來完善學(xué)生的思維及找到他們的不足。
例3:在△ABC中,AB · CA>0,
△ABC是什么三角形?
π-A
A
B
C
D
生】:學(xué)生獨立完成。
【師】:點撥,歸納。
總結(jié)出由數(shù)量積在判斷三角形中的應(yīng)用。
反
饋
練
8、習(xí)
鞏
固
新
知
技能演練:
①由 a · b =0,能得出 a =0或 b =0?
②| p |=2,| q |=3,夾角θ=450,p · q=?
③a · b =0 ( a ≠0,b ≠0), a,b的夾角是多少
【師】:指導(dǎo)學(xué)生分析題目。
【生】:先獨立完成,然后以小組為單位,互相檢查自己在解題中的錯誤。
通過這些練習(xí)培養(yǎng)、鞏固和提升學(xué)生的認(rèn)知水平,關(guān)注學(xué)生的數(shù)學(xué)表達,提供反饋校正的素材,并體現(xiàn)數(shù)學(xué)的應(yīng)用價值。
課時小節(jié)
本節(jié)課你學(xué)會了那些知識和方法?(由學(xué)生復(fù)述)
學(xué)生先交流互相說一說,然后由學(xué)生自己回答,并由多個學(xué)生補充完善。
學(xué)生自己總結(jié)出本節(jié)課的知識點,可以幫助學(xué)生消化本節(jié)課,并能培養(yǎng)學(xué)生的歸納總結(jié)的能力數(shù)學(xué)語言表達能力和自我整理的學(xué)習(xí)習(xí)慣。
課
后
作
業(yè)
作業(yè):
1、練習(xí)中2、3、4
2、習(xí)題3。
由學(xué)生獨立完成
課內(nèi)引申到課外,使不同層次的學(xué)生在數(shù)學(xué)學(xué)習(xí)上得到不同的發(fā)展。
友情提示:部分文檔來自網(wǎng)絡(luò)整理,供您參考!文檔可復(fù)制、編制,期待您的好評與關(guān)注!
5 / 5