《高中數(shù)學:《函數(shù)的和、差、積、商的導數(shù)》課件蘇教版選修22》由會員分享,可在線閱讀,更多相關《高中數(shù)學:《函數(shù)的和、差、積、商的導數(shù)》課件蘇教版選修22(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、函數(shù)的函數(shù)的和、差、積、商的導數(shù)和、差、積、商的導數(shù)一、復習回顧一、復習回顧為常數(shù))(x)x)(2(11)a0,lna(aa)a)(3(xx且1)a, 0a (xlna1)xlog)(4(a且sinx(8)(cosx) e)e)(5(xxx1(6)(lnx) cosx )sinx)(7(1 1、基本求導公式、基本求導公式: :)(0) 1 (為常數(shù)CC 注意注意: :關于關于 是兩個不同是兩個不同的函數(shù)的函數(shù), ,例如例如: :axxa 和 )3)(1 (x )(2(3x3ln3x23x2 2、由定義求導數(shù)(三步法、由定義求導數(shù)(三步法)步驟步驟: :);()()1(xfxxfy 求增量求增量
2、;)()()2(xxfxxfxy 算比值算比值常數(shù), 0)3(xyx當2)(xxfxxg)(結論:結論: . )()()(22xxxx)()( )()(xgxfxgxf猜想:猜想:3 3鞏固鞏固練習:練習:利用導數(shù)定義求利用導數(shù)定義求 的導數(shù)的導數(shù). . xxy212)(2xxxxxxgxf2)()(證明猜想證明猜想).()()()(xgxfxgxf證明:令證明:令 ).()(xgxfy )()()()(xgxfxxgxxfy xxgxxgxfxxfxy)()()()( )()()()(xgxxgxfxxf xxgxxgxxfxxf)()()()()()(xgxf二、知識新授二、知識新授 法則
3、法則1 1: : 兩個函數(shù)的兩個函數(shù)的和(或差)的導數(shù)和(或差)的導數(shù),等于這兩個函數(shù)的導數(shù)的和(或差),即:等于這兩個函數(shù)的導數(shù)的和(或差),即:).()( )()(xgxfxgxf法則法則2:2:).( )(為常數(shù)CxfCxCf.sin)() 1 (. 12的的導導數(shù)數(shù)求求函函數(shù)數(shù)例例xxxfxxxxxxxfcos2)(sin)()sin()(22解:.2623)()2(23的導數(shù)求函數(shù)xxxxg633)6()23()()623()(22323xxxxxxxxxg解:三、數(shù)學應用三、數(shù)學應用法則法則3:3:兩個函數(shù)的兩個函數(shù)的積的導數(shù)積的導數(shù),等于第一,等于第一個函數(shù)的導數(shù)乘以第二個函數(shù)加
4、上第一個個函數(shù)的導數(shù)乘以第二個函數(shù)加上第一個函數(shù)乘以第二個函數(shù)的導數(shù)即:函數(shù)乘以第二個函數(shù)的導數(shù)即:).()()()( )()(xgxfxgxfxgxf二、知識新授二、知識新授.ln2)()2(.sin)() 1 (2的導數(shù)求函數(shù)的導數(shù)求函數(shù):例xxxfxxxhxxxxxxxxxxhcossin)(sinsin)sin()() 1 ( :解2ln2)(ln2(ln)2()ln2()()2(xxxxxxxxf三、數(shù)學應用三、數(shù)學應用法則法則4 4 : :兩個函數(shù)的兩個函數(shù)的商的導數(shù)商的導數(shù),等于分子的,等于分子的導數(shù)與分母的積,減去分母的導數(shù)與分子導數(shù)與分母的積,減去分母的導數(shù)與分子的積,再除以
5、分母的平方的積,再除以分母的平方, ,即:即: )()()()()()()(2xgxgxfxgxfxgxf0)(xg其中二、知識新授二、知識新授.1)() 1 (32的的導導數(shù)數(shù)求求函函數(shù)數(shù):例例ttts)1()() 1 ( :解2ttts222) 1() 1(ttttt22222112ttttt的導數(shù).ex(2)求函數(shù)f(x)x)()()2( :解xexxf2)()(xxxeexexxxxxxxxexexeeeexex1)()(22三、數(shù)學應用三、數(shù)學應用的導數(shù)的導數(shù)4 45x5x3x3x2x2xy y求求1.1.2 23 3練練 習習566)4532(:解223xxxxxy的導數(shù)的導數(shù)2)
6、2)3)(3x3)(3x(2x(2xy y用兩種方法求用兩種方法求2.2.2 298182xx解:解:) 23)(32 () 23 ( ) 32 (22xxxxy3)32()23(42 xxx法二:法二:法一:法一:)6946(23xxxy98182xx的導數(shù)的導數(shù)xxysin. 32 xxxxxy222sin)(sinsin)(解:xxxxx22sincossin2處處的的導導數(shù)數(shù)在在點點求求333. 42 xxxy222)3(2)3()3(1xxxxy解:222) 3(36xxx61)33(3363)3(,3222fx時當例例4:4:求曲線求曲線y=xy=x3 3+3x+3x8 8在在x=
7、2x=2處的切處的切線的方程線的方程. .即:即:,切線方程為切線方程為,又切線過點又切線過點,解:解:02415)2(156:)6 , 2(15323)2(33)83()(223yxxyfkxxxxf練練 習習1 1求求 的導數(shù)的導數(shù) )11(32xxxxy 3223xxy 2 2求求 的導數(shù)的導數(shù) )11)(1( xxy.1121 xxy四、課堂小結:四、課堂小結:函數(shù)的和、差、積、商的導數(shù):函數(shù)的和、差、積、商的導數(shù): 法則法則1 1: : 兩個函數(shù)的兩個函數(shù)的和(或差)的導數(shù)和(或差)的導數(shù),等于這,等于這兩個函數(shù)的導數(shù)的和(或差),即:兩個函數(shù)的導數(shù)的和(或差),即:).()( )(
8、)(xgxfxgxf法則法則2:2:).( )(為常數(shù)CxfCxCf法則法則3 3:兩個函數(shù)的兩個函數(shù)的積的導數(shù)積的導數(shù),等于第一個函,等于第一個函數(shù)的導數(shù)乘以第二個函數(shù)加上第一個函數(shù)乘以第數(shù)的導數(shù)乘以第二個函數(shù)加上第一個函數(shù)乘以第二個函數(shù)的導數(shù)即:二個函數(shù)的導數(shù)即:).()()()( )()(xgxfxgxfxgxf法則法則4 4:兩個函數(shù)的兩個函數(shù)的商的導數(shù)商的導數(shù),等于分子的導數(shù),等于分子的導數(shù)與分母的積,減去分母的導數(shù)與分子的積,再與分母的積,減去分母的導數(shù)與分子的積,再除以分母的平方除以分母的平方, ,即:即: )()()()()()()(2xgxgxfxgxfxgxf0)(xg其中課后作業(yè):課后作業(yè):課本課本 P P2626 習題習題1.21.2No.1No.1、;2 2、;4 4、5 5、8. 8.