新編高三數(shù)學理33個黃金考點總動員 考點06 基本初等函數(shù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)解析版 Word版含解析
《新編高三數(shù)學理33個黃金考點總動員 考點06 基本初等函數(shù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)解析版 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新編高三數(shù)學理33個黃金考點總動員 考點06 基本初等函數(shù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、二次函數(shù)解析版 Word版含解析(20頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 高三數(shù)學33個黃金考點總動員 【考點剖析】 1.最新考試說明: 1.理解指數(shù)冪的概念,理解指數(shù)函數(shù)的單調(diào)性,會解決與指數(shù)函數(shù)性質(zhì)有關(guān)的問題. 2.理解對數(shù)的概念及其運算性質(zhì),會用換底公式將一般對數(shù)轉(zhuǎn)化為自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用. 3.理解對數(shù)函數(shù)的概念,能解決與對數(shù)函數(shù)性質(zhì)有關(guān)的問題. 4.結(jié)合函數(shù)y=x,y=x2,y=x3,y=x,的圖象,了解它們的變化情況. 2.命題方向預測: 1.指數(shù)函數(shù)的概念、圖象與性質(zhì)是近幾年高考的熱點. 2.通過具體問題考查指數(shù)函數(shù)的圖象與性質(zhì),或利用指數(shù)函數(shù)的圖象與性質(zhì)解決一些實際問題是重點,也是難點
2、,同時考查分類討論思想和數(shù)形結(jié)合思想. 3.高考考查的熱點是對數(shù)式的運算和對數(shù)函數(shù)的圖象、性質(zhì)的綜合應用,同時考查分類討論、數(shù)形結(jié)合、函數(shù)與方程思想. 4.關(guān)于冪函數(shù)常以5種冪函數(shù)為載體,考查冪函數(shù)的概念、圖象與性質(zhì),多以小題形式出現(xiàn),屬容易題. 5.二次函數(shù)的圖象及性質(zhì)是近幾年高考的熱點;用三個“二次”間的聯(lián)系解決問題是重點,也是難點. 6.題型以選擇題和填空題為主,若與其他知識點交匯,則以解答題的形式出現(xiàn). 1. 課本結(jié)論總結(jié): 指數(shù)與指數(shù)函數(shù) 1.分數(shù)指數(shù)冪 (1)規(guī)定:正數(shù)的正分數(shù)指數(shù)冪的意義是 (a>0,m,n∈N*,且n>1);正數(shù)的負分數(shù)指數(shù)冪的意義是 (a>0,
3、m,n∈N*,且n>1);0的正分數(shù)指數(shù)冪等于0;0的負分數(shù)指數(shù)冪沒有意義. (2)有理指數(shù)冪的運算性質(zhì):aras=ar+s,(ar)s=ars,(ab)r=arbr,其中a>0,b>0,r,s∈Q. 2.指數(shù)函數(shù)的圖象與性質(zhì) 對數(shù)與對數(shù)函數(shù) 1.對數(shù)的概念 如果ax=N(a>0且a≠1),那么數(shù)x叫做以a為底N的對數(shù),記作x=logaN,其中__a__叫做對數(shù)的底數(shù),__N__叫做真數(shù). 2.對數(shù)的性質(zhì)與運算法則 (1)對數(shù)的運算法則 如果a>0且a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;②loga=logaM-logaN; ③lo
4、gaMn=nlogaM (n∈R);④logamMn=logaM. (2)對數(shù)的性質(zhì) ①alogaN=__N__;②logaaN=__N__(a>0且a≠1). (3)對數(shù)的重要公式 ①換底公式:logbN= (a,b均大于零且不等于1); ②logab=,推廣logab·logbc·logcd=logad. 3.對數(shù)函數(shù)的圖象與性質(zhì) 二次函數(shù)與冪函數(shù) 1.二次函數(shù) (1)二次函數(shù)解析式的三種形式 ①一般式:f(x)=ax2+bx+c(a≠0). ②頂點式:f(x)=a(x-m)2+n(a≠0). ③零點式:f(x)=a(x-x1)(x-x2)(a≠0). (2)
5、二次函數(shù)的圖象和性質(zhì) 解析式 f(x)=ax2+bx+c(a>0) f(x)=ax2+bx+c(a<0) 圖象 定義域 (-∞,+∞) (-∞,+∞) 值域 單調(diào)性 在x∈上單調(diào)遞減;在x∈上單調(diào)遞增 在x∈上單調(diào)遞減在x∈上單調(diào)遞增 對稱性 函數(shù)的圖象關(guān)于x=對稱 2.冪函數(shù) (1)定義:形如y=xα(α∈R)的函數(shù)稱為冪函數(shù),其中x是自變量,α是常數(shù). (2)冪函數(shù)的圖象比較 (3)冪函數(shù)的性質(zhì)比較 特征 函數(shù) 性質(zhì) y=x y=x2 y=x3 y=x-1 定義域 R R R [0,+
6、∞) {x|x∈R且x≠0} 值域 R [0,+∞) R [0,+∞) {y|y∈R且y≠0} 奇偶性 奇函數(shù) 偶函數(shù) 奇函數(shù) 非奇非偶函數(shù) 奇函數(shù) 單調(diào)性 增 x∈[0,+∞)時,增;x∈(-∞,0]時,減 增 增 x∈(0,+∞) 時,減;x∈(-∞,0)時,減 4.名師二級結(jié)論: (1)根式與分數(shù)指數(shù)冪的實質(zhì)是相同的,分數(shù)指數(shù)冪與根式可以相互轉(zhuǎn)化,通常利用分數(shù)指數(shù)冪進行根式的化簡運算. (2)指數(shù)函數(shù)的單調(diào)性是由底數(shù)a的大小決定的,因此解題時通常對底數(shù)a按:0<a<1和a>1進行分類討論. (3)換元時注意換元后“新元”的范圍. (4)
7、對數(shù)源于指數(shù),指數(shù)式和對數(shù)式可以互化,對數(shù)的性質(zhì)和運算法則都可以通過對數(shù)式與指數(shù)式的互化進行證明. (5)解決與對數(shù)有關(guān)的問題時,(1)務必先研究函數(shù)的定義域;(2)注意對數(shù)底數(shù)的取值范圍. (6)對數(shù)值的大小比較方法 化同底后利用函數(shù)的單調(diào)性、作差或作商法、利用中間量(0或1)、化同真數(shù)后利用圖象比較. (7)函數(shù)y=f(x)對稱軸的判斷方法 1、對于二次函數(shù)y=f(x)對定義域內(nèi)所有x,都有f(x1)=f(x2),那么函數(shù)y=f(x)的圖象關(guān)于x=對稱. 2、對于二次函數(shù)y=f(x)對定義域內(nèi)所有x,都有f(a+x)=f(a-x)成立的充要條件是函數(shù)y=f(x)的圖象關(guān)于直線x
8、=a對稱(a為常數(shù)). 5.課本經(jīng)典習題: (1)新課標A版第 70 頁,B組第 2 題 指數(shù)函數(shù)的圖象如圖所示,求二次函數(shù)的頂點的橫坐標的取值范圍. 1 答案:由圖可知指數(shù)函數(shù)是減函數(shù),所以. 而二次函數(shù)的頂點的橫坐標為, 所以,即二次函數(shù)的頂點的橫坐標的取值范圍是. 【經(jīng)典理由】有效把指數(shù)函數(shù)和二次函數(shù)相結(jié)合 (2)新課標A版第 60 頁,B組第 4 題 設其中確定為何值時,有: 【解析】(1)3x+1=-2x時,得x=-; (2)時,單調(diào)遞增,由于,得3x+1>-2x得x>-, ,單調(diào)遞減,由于,得3x+1-2x解得x-.
9、 【經(jīng)典理由】根據(jù)a的取值進行分類討論 (3)新課標A版第 72 頁,例8 比較下列各組數(shù)中兩個數(shù)的大?。? (1)log 2 3 . 4 與 log 2 8 . 5; (2)log 0 . 3 1 . 8 與 log 0 . 3 2 . 7; (3)log a 5 . 1 與 log a 5 . 9 (且). 解:(1)∵ y = log 2 x 在 ( 0 , + ∞) 上是增函數(shù)且 3 . 4<8 . 5, ∴ log 2 3 . 4 < log 2 8 . 5 ; (2)∵ y = log 0 . 3 x 在 ( 0 , + ∞)上是減函數(shù)且 1 . 8<2 .
10、7, ∴l(xiāng)og 0 . 3 1 . 8>log 0 . 3 2 . 7; (3)解:當時,∵ y = log a x在( 0 , + ∞) 上是增函數(shù)且5 . 1<5 . 9, ∴ log a 5 . 1log a 5 . 9, 當0<a<1時,∵ y = log a x在 ( 0 , + ∞) 上是減函數(shù)且5 . 1<5 . 9, ∴ log a 5 . 1>log a 5 . 9 . 【經(jīng)典理由】以對數(shù)函數(shù)為載體,考查對數(shù)運算和對數(shù)函數(shù)的圖象與性質(zhì)的應用 (4)新課標A版第 822 頁,A組第10題 已知冪函數(shù),試求出此函數(shù)的解析式,并作出圖像,判斷奇偶性、單調(diào)性. 【
11、分析】根據(jù)冪函數(shù)的概念設,將點的坐標代入即可求得n值,從而求得函數(shù)解析式.要判斷函數(shù)的奇偶性我們可以根據(jù)函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,判斷函數(shù)圖象在(0,+∞)的單調(diào)性,進而畫出函數(shù)的圖象. 【解析】設,因為冪函數(shù), , 這個函數(shù)解析式為 . 定義域為(0,+∞),它不關(guān)于原點對稱, 所以,y=f(x)是非奇非偶函數(shù). 當x>0時,f(x)是單調(diào)減函數(shù),函數(shù)的圖象如圖. 【經(jīng)典理由】本題通過待定系數(shù)法求冪函數(shù)解析式、解指數(shù)方程的解法、奇(偶)函數(shù)性、冪函數(shù)圖象考查學生對冪函數(shù)有關(guān)知識的掌握程度和對知識的綜合應用能力 6.考點交匯展示: (1)基本初等函數(shù)與集合交匯
12、例1【河北省“五個一名校聯(lián)盟”20xx高三教學質(zhì)量監(jiān)測(一)1】設集合,,則( ) A.AB B.AB C.AB D.AB 【答案】B 考點:1.一元二次不等式解法;2.指數(shù)不等式解法;3.集合間關(guān)系與集合運算. 例2 設集合,,則等于 (A) (B) (C) (D) 【答案】D 【解析】M=,N=,故= 考點:1.簡單不等式的解法;2.對數(shù)函數(shù)的性質(zhì);3.集合的運算. (2)基本初等函數(shù)與基本不等式交匯 例1【成都石室中學高三上期“一診”模擬考試(一)】已知二次函數(shù)的值域為,
13、則的最小值為 . 【答案】3 【解析】由題意得:. 考點:1.二次函數(shù)的圖象和性質(zhì);2.基本不等式. 【考點分類】 熱點1 指數(shù)函數(shù)、對數(shù)函數(shù) 1. 【20xx高考四川,理8】設a,b都是不等于1的正數(shù),則“”是“”的 ( ) (A) 充要條件 (B)充分不必要條件 (C)必要不充分條件 (D)既不充分也不必要條件 【答案】B 考點:1.充要條件;2.指數(shù)函數(shù)、對數(shù)函數(shù)的性質(zhì). 2. 設,函數(shù)在單調(diào)遞減,則( ) A.在上單調(diào)遞減,在上單調(diào)遞增 B.在上單調(diào)遞增,在上單調(diào)遞減 C.在上單調(diào)遞增,在上單
14、調(diào)遞增 D.在上單調(diào)遞減,在上單調(diào)遞減 【答案】A 【解析】由的圖像可知,函數(shù)在在上單調(diào)遞增,在上單調(diào)遞減,在單調(diào)遞增,因函數(shù)在單調(diào)遞減,故根據(jù)同增異減可知,故答案為A. 考點:1.對數(shù)函數(shù)的性質(zhì);2.復合函數(shù)的單調(diào)性. 3.【20xx遼寧高考理第3題】已知,,則( ) A. B. C. D. 【答案】C 【解析】 試題分析:所以,故選C. 考點:1.指數(shù)對數(shù)化簡;2.不等式大小比較. 4. 下列函數(shù)中,在內(nèi)單調(diào)遞減,并且是偶函數(shù)的是( ) A. B. C. D. 【答案】C 考點:函數(shù)奇偶性與單調(diào)性. 【方法規(guī)律】 1.求解與指數(shù)函數(shù)有
15、關(guān)的復合函數(shù)問題,首先要熟知指數(shù)函數(shù)的定義域、值域、單調(diào)性等相關(guān)性質(zhì),其次要明確復合函數(shù)的構(gòu)成,涉及值域、單調(diào)區(qū)間、最值等問題時,都要借助“同增異減”這一性質(zhì)分析判斷,最終將問題歸納為內(nèi)層函數(shù)相關(guān)的問題加以解決. 2.對數(shù)式的化簡與求值的常用思路(1)先利用冪的運算把底數(shù)或真數(shù)進行變形,化成分數(shù)指數(shù)冪的形式,使冪的底數(shù)最簡,然后正用對數(shù)運算法則化簡合并. (2)先將對數(shù)式化為同底數(shù)對數(shù)的和、差、倍數(shù)運算,然后逆用對數(shù)的運算法則,轉(zhuǎn)化為同底對數(shù)真數(shù)的積、商、冪再運算. 3.比較對數(shù)值大小時若底數(shù)相同,構(gòu)造相應的對數(shù)函數(shù),利用單調(diào)性求解;若底數(shù)不同,可以找中間量,也可以用換底公式化成同底的對
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。