《新編【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測(cè):第2章 第9節(jié) 函數(shù)模型及其應(yīng)用》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《新編【創(chuàng)新方案】高考數(shù)學(xué)理一輪知能檢測(cè):第2章 第9節(jié) 函數(shù)模型及其應(yīng)用(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
第九節(jié) 函數(shù)模型及其應(yīng)用
[全盤(pán)鞏固]
1.(20xx·日照模擬)物價(jià)上漲是當(dāng)前的主要話(huà)題,特別是菜價(jià),我國(guó)某部門(mén)為盡快穩(wěn)定菜價(jià),提出四種綠色運(yùn)輸方案.據(jù)預(yù)測(cè),這四種方案均能在規(guī)定的時(shí)間T內(nèi)完成預(yù)測(cè)的運(yùn)輸任務(wù)Q0,各種方案的運(yùn)輸總量Q與時(shí)間t的函數(shù)關(guān)系如圖所示,在這四種方案中,運(yùn)輸效率(單位時(shí)間的運(yùn)輸量)逐步提高的是( )
解析:選B 由運(yùn)輸效率(單位時(shí)間的運(yùn)輸量)逐步提高得曲線(xiàn)上的點(diǎn)的切線(xiàn)斜率應(yīng)該逐漸增大.
2.客車(chē)從甲地以60 km/h的速度勻速行駛1小時(shí)到達(dá)乙地,在乙地停留了半小時(shí),然后以80 km/h的速度勻速行駛1小時(shí)到達(dá)丙地.下列描述客車(chē)從甲
2、地出發(fā),經(jīng)過(guò)乙地,最后到達(dá)丙地所經(jīng)過(guò)的路程s與時(shí)間t之間的關(guān)系式正確的是 ( )
A.s(t)=60t,0≤t≤ B.s(t)=
C.s(t)= D.s(t)=
解析:選D 由題意可得路程s與時(shí)間t之間的關(guān)系式為s(t)=
3.在一次數(shù)學(xué)試驗(yàn)中,采集到如下一組數(shù)據(jù):
x
-2
-1
0
1
2
3
y
0.24
0.51
1
2.02
3.98
8.02
則下列函數(shù)與x,y的函數(shù)關(guān)系最接近的是(其中a,b為待定系數(shù))( )
A.y=a+bx B.y=a+bx
C.y=ax2+b D
3、.y=a+
解析:選B 由數(shù)據(jù)可知x,y之間的函數(shù)關(guān)系近似為指數(shù)型.
4.一個(gè)人以6 m/s的速度去追停在交通燈前的汽車(chē),當(dāng)他離汽車(chē)25 m時(shí),交通燈由紅變綠,汽車(chē)以1 m/s2的加速度勻加速開(kāi)走,那么( )
A.人可在7 s內(nèi)追上汽車(chē)
B.人可在10 s內(nèi)追上汽車(chē)
C.人追不上汽車(chē),其間距最少為5 m
D.人追不上汽車(chē),其間距最少為7 m
解析:選D 設(shè)汽車(chē)經(jīng)過(guò)t秒行駛的路程為s米,則s=t2,車(chē)與人的間距d=(s+25)-6t=t2-6t+25=(t-6)2+7,當(dāng)t=6時(shí),d取得最小值為7.
5.圖形M(如圖所示)是由底為1,高為1的等腰三角形及高為2和3的兩個(gè)矩形
4、所構(gòu)成,函數(shù)S=S(a)(a≥0)是圖形M介于平行線(xiàn)y=0及y=a之間的那一部分面積,則函數(shù)S(a)的圖象大致是( )
解析:選C 法一:依題意,當(dāng)0≤a≤1時(shí),S(a)=+2a=-a2+3a;
當(dāng)13時(shí),S(a)=+2+3=,于是S(a)=
由解析式可知選C.
法二:直線(xiàn)y=a在[0,1]上平移時(shí)S(a)的變化量越來(lái)越小,故可排除選項(xiàng)A、B.而直線(xiàn)y=a在[1,2]上平移時(shí)S(a)的變化量比在[2,3]上的變化量大,故可排除選項(xiàng)D.
6.(20xx·溫州模擬)某輛汽車(chē)購(gòu)買(mǎi)時(shí)的費(fèi)用是15萬(wàn)元,每年
5、使用的保險(xiǎn)費(fèi)、路橋費(fèi)、汽車(chē)費(fèi)等約為1.5萬(wàn)元.年維修保養(yǎng)費(fèi)用第一年3 000元,以后逐年遞增3 000元,則這輛汽車(chē)報(bào)廢的最佳年限(即使用多少年的年平均費(fèi)用最少)是( )
A.8年 B.10年
C.12年 D.15年
解析:選B 當(dāng)這輛汽車(chē)使用n年時(shí),相應(yīng)的年平均費(fèi)用為=≥×,當(dāng)且僅當(dāng)=0.3n,即n=10時(shí)取等號(hào),因此這輛汽車(chē)使用10年時(shí),相應(yīng)的年平均費(fèi)用最少.故這輛汽車(chē)報(bào)廢的最佳年限是10年.
7.一個(gè)容器裝有細(xì)沙a cm3,細(xì)沙從容器底下一個(gè)細(xì)微的小孔慢慢地勻速漏出,t min后剩余的細(xì)沙量為y=ae-bt(cm3),經(jīng)過(guò)8 min 后發(fā)現(xiàn)容器內(nèi)還有一半的沙子
6、,則再經(jīng)過(guò)________min,容器中的沙子只有開(kāi)始時(shí)的八分之一.
解析:依題意有a·e-b×8=a,∴b=,∴y=a·e- ·t
若容器中只有開(kāi)始時(shí)的八分之一,則有a·e-·t=a.解得t=24,
所以再經(jīng)過(guò)的時(shí)間為24-8=16 min.
答案:16
8.某公司在甲、乙兩地銷(xiāo)售一種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為L(zhǎng)1=5.06x-0.15x2和L2=2x,其中x為銷(xiāo)售量(單位:輛).若該公司在這兩地共銷(xiāo)售15輛車(chē),則能獲得的最大利潤(rùn)為_(kāi)_______萬(wàn)元.
解析:設(shè)該公司在甲地銷(xiāo)售x輛,則在乙地銷(xiāo)售(15-x)輛,利潤(rùn)為L(zhǎng)(x)=5.06x-0.15x2+2(15-x)=-0
7、.15x2+3.06x+30=-0.152+0.15×+30,由于x為整數(shù),所以當(dāng)x=10時(shí),L(x)取最大值L(10)=45.6,即能獲得的最大利潤(rùn)為45.6萬(wàn)元.
答案:45.6
9.某商場(chǎng)宣傳在節(jié)假日對(duì)顧客購(gòu)物實(shí)行一定的優(yōu)惠,商場(chǎng)規(guī)定:
①如一次購(gòu)物不超過(guò)200元,不予以折扣;
②如一次購(gòu)物超過(guò)200元,但不超過(guò)500元,按標(biāo)價(jià)予以九折優(yōu)惠;
③如一次購(gòu)物超過(guò)500元的,其中500元給予九折優(yōu)惠,超過(guò)500元的給予八五折優(yōu)惠.
某人兩次去購(gòu)物,分別付款176元和432元,如果他只去一次購(gòu)買(mǎi)同樣的商品,則應(yīng)付款________元.
解析:由題意知付款432元,實(shí)際標(biāo)價(jià)為432
8、×=480元,如果一次購(gòu)買(mǎi)標(biāo)價(jià)176+480=656元的商品應(yīng)付款500×0.9+156×0.85=582.6元.
答案:582.6
10.設(shè)某旅游景點(diǎn)每天的固定成本為500元,門(mén)票每張為30元,變動(dòng)成本與購(gòu)票進(jìn)入旅游景點(diǎn)的人數(shù)的算術(shù)平方根成正比.一天購(gòu)票人數(shù)為25時(shí),該旅游景點(diǎn)收支平衡;一天購(gòu)票人數(shù)超過(guò)100時(shí),該旅游景點(diǎn)須另交保險(xiǎn)費(fèi)200元.設(shè)每天的購(gòu)票人數(shù)為x,盈利額為y元.
(1)求y與x之間的函數(shù)關(guān)系;
(2)該旅游景點(diǎn)希望在人數(shù)達(dá)到20人時(shí)就不出現(xiàn)虧損,若用提高門(mén)票價(jià)格的措施,則每張門(mén)票至少要多少元(取整數(shù))?(參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.24)
解:(
9、1)根據(jù)題意,當(dāng)購(gòu)票人數(shù)不多于100時(shí),可設(shè)y與x之間的函數(shù)關(guān)系為
y=30x-500-k(k為常數(shù),k∈R且k≠0).∵人數(shù)為25時(shí),該旅游景點(diǎn)收支平衡,
∴30×25-500-k=0,解得k=50.∴y=
(2) 設(shè)每張門(mén)票價(jià)格提高為m元,根據(jù)題意,得m×20-50-500≥0,
(3) ∴m≥25+5≈36.2,故每張門(mén)票最少要37元.
11.為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國(guó)家科研部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表
10、示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品的價(jià)值為100元.
(1)該單位每月處理量為多少?lài)崟r(shí),才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則國(guó)家至少需要補(bǔ)貼多少元才能使該單位不虧損?
解:(1)由題意可知,二氧化碳的每噸平均處理成本為
=x+-200≥2 -200=200,當(dāng)且僅當(dāng)x=,即x=400時(shí),上式取等號(hào),即當(dāng)每月處理量為400噸時(shí),才能使每噸的平均處理成本最低,最低成本為200元.
(2)設(shè)該單位每月獲利為S,則S=100x-y=100x-=-x2+300x-80 000=-(x-300
11、)2-35 000,因?yàn)?00≤x≤600,所以當(dāng)x=400時(shí),S有最大值-40 000.
故該單位不獲利,需要國(guó)家每月至少補(bǔ)貼40 000元,才能不虧損.
12.某特許專(zhuān)營(yíng)店銷(xiāo)售西安世界園藝博覽會(huì)紀(jì)念章,每枚進(jìn)價(jià)為5元,同時(shí)每銷(xiāo)售一枚這種紀(jì)念章還需向世博會(huì)管理處交特許經(jīng)營(yíng)管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷(xiāo)售時(shí)該店一年可銷(xiāo)售2 000枚,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷(xiāo)售價(jià)格在每枚20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷(xiāo)售400枚,而每增加一元?jiǎng)t減少銷(xiāo)售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷(xiāo)售價(jià)格為x(元).
(1)寫(xiě)出該特許專(zhuān)營(yíng)店一年內(nèi)銷(xiāo)售這種紀(jì)念章所獲得的利潤(rùn)y(元)與每枚紀(jì)念章的銷(xiāo)售價(jià)格x
12、的函數(shù)關(guān)系式(并寫(xiě)出這個(gè)函數(shù)的定義域);
(2)當(dāng)每枚紀(jì)念章銷(xiāo)售價(jià)格x為多少元時(shí),該特許專(zhuān)營(yíng)店一年內(nèi)利潤(rùn)y(元)最大,并求出這個(gè)最大值.
解:(1)依題意y=
∴y=此函數(shù)的定義域?yàn)?0,40).
(2)y=若0<x≤20,則當(dāng)x=16時(shí),ymax=32 400(元).若20
13、n>10(其中n是任課教師所在班級(jí)學(xué)生參加高考該任課教師所任學(xué)科的平均成績(jī)與該科省平均分之差,f(n)的單位為元),而k(n)=現(xiàn)有甲、乙兩位數(shù)學(xué)任課教師,甲所教的學(xué)生高考數(shù)學(xué)平均分超出省平均分18分,而乙所教的學(xué)生高考數(shù)學(xué)平均分超出省平均分21分.則乙所得獎(jiǎng)勵(lì)比甲所得獎(jiǎng)勵(lì)多( )
A.600元 B.900元 C.1 600元 D.1 700元
解析:選D k(18)=200,∴f(18)=200×(18-10)=1 600.又∵k(21)=300,∴f(21)=300×(21-10)=3 300,∴f(21)-f(18)=3 300-1 600=1 700.故乙所得獎(jiǎng)勵(lì)比甲所得獎(jiǎng)
14、勵(lì)多1 700元.
2.某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)的部分為每噸3.00元.若甲、乙兩戶(hù)某月共交水費(fèi)y元,且甲、乙兩戶(hù)該月用水量分別為5x噸、3x噸,則y關(guān)于x的函數(shù)關(guān)系式為_(kāi)_______.
解析:依題意可知,當(dāng)甲、乙兩戶(hù)用水量都不超過(guò)4噸,即0≤x≤時(shí),y=1.8(5x+3x)=14.4x;當(dāng)甲戶(hù)用水量超過(guò)4噸,乙戶(hù)用水量不超過(guò)4噸,即時(shí),y=3(5x-4+3x-4)+4×1.8×2=24x-9.6.故y=
15、答案:y=
[高頻滾動(dòng)]
1.定義域?yàn)镽的奇函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),當(dāng)x∈[0,1]時(shí),f(x)=x,方程f(x)=log2 013x的實(shí)數(shù)根的個(gè)數(shù)為( )
A.1 006 B.1 007 C.2 012 D.2 014
解析:選A 因?yàn)閒(x)在R上是奇函數(shù),其圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),且當(dāng)x∈[0,1]時(shí),f(x)=x,所以f(x)在[-1,1]上單調(diào)遞增,在[1,3]上單調(diào)遞減,且f(x)為周期函數(shù),周期T=4.令log2 013x=1,得x=2 013,故f(x)=log2 013x的實(shí)根有2×503=1 006個(gè).
2.對(duì)實(shí)
16、數(shù)a和b,定義運(yùn)算“?”:a?b=設(shè)函數(shù)f(x)=(x2-2)?(x-1),x∈R.若函數(shù)y=f(x)-c的圖象與x軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)c的取值范圍是( )
A.(-1,1]∪(2,+∞) B.(-2,-1]∪(1,2]
C.(-∞,-2)∪(1,2] D.[-2,-1]
解析:選B 由題設(shè)知f(x)=畫(huà)出函數(shù)f(x)的圖象,如圖,A(2,1)、B(2,2)、C(-1,-1)、D(-1,-2).從圖象中可以看出,直線(xiàn)y=c與函數(shù)的圖象有且只有兩個(gè)公共點(diǎn)時(shí),實(shí)數(shù)c的取值范圍是(-2,-1]∪(1,2].