新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版

上傳人:無*** 文檔編號:62247408 上傳時間:2022-03-14 格式:DOC 頁數(shù):6 大?。?79.50KB
收藏 版權(quán)申訴 舉報 下載
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版_第1頁
第1頁 / 共6頁
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版_第2頁
第2頁 / 共6頁
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第5章 數(shù)列 第4節(jié) 數(shù)列求和學(xué)案 文 北師大版(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 第四節(jié) 數(shù)列求和 [考綱傳真] 1.掌握等差、等比數(shù)列的前n項和公式.2.掌握特殊的非等差、等比數(shù)列的幾種常見的求和方法. (對應(yīng)學(xué)生用書第74頁) [基礎(chǔ)知識填充] 1.公式法 (1)等差數(shù)列的前n項和公式: Sn==na1+d; (2)等比數(shù)列的前n項和公式: Sn= 2.分組轉(zhuǎn)化法 把數(shù)列的每一項分成兩項或幾項,使其轉(zhuǎn)化為幾個等差、

3、等比數(shù)列,再求解. 3.裂項相消法 (1)把數(shù)列的通項拆成兩項之差,在求和時中間的一些項可以相互抵消,從而求得其和. (2)裂項時常用的三種變形: ①=; ②==; ③=-. 4.錯位相減法 如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,這個數(shù)列的前n項和可用錯位相減法求解. 5.倒序相加法 如果一個數(shù)列{an}的前n項中與首末兩端等“距離”的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前n項和即可用倒序相加法求解. 6.并項求和法 一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采

4、用兩項合并求解. 例如,Sn=1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)如果數(shù)列{an}為等比數(shù)列,且公比不等于1,則其前n項和Sn=.(  ) (2)當(dāng)n≥2時,=.(  ) (3)求Sn=a+2a2+3a3+…+nan之和時只要把上式等號兩邊同時乘以a即可根據(jù)錯位相減法求得.(  ) (4)如果數(shù)列{an}是周期為k(k為大于1的正整數(shù))的周期數(shù)列,那么Skm=mSk.(  ) [答案] (

5、1)√ (2)√ (3)× (4)√ 2.(教材改編)數(shù)列{an}的前n項和為Sn,若an=,則S5等于(  ) A.1           B. C. D. B [∵an==-, ∴S5=a1+a2+…+a5=1-+-+…-=.] 3.(20xx·開封模擬)已知等比數(shù)列{an}中,a2·a8=4a5,等差數(shù)列{bn}中,b4+b6=a5,則數(shù)列{bn}的前9項和S9等于(  ) 【導(dǎo)學(xué)號:00090174】 A.9 B.18 C.36 D.72 B [∵a2·a8=4a5,即a=4a5,∴a5=4, ∴a5=b4+b6=2b5=4,∴b5=2, ∴S9

6、=9b5=18,故選B.] 4.若數(shù)列{an}的通項公式為an=2n+2n-1,則數(shù)列{an}的前n項和Sn=__________. 2n+1-2+n2 [Sn=+=2n+1-2+n2.] 5.3·2-1+4·2-2+5·2-3+…+(n+2)·2-n=__________. 4- [設(shè)S=3×+4×+5×+…+(n+2)×, 則S=3×+4×+5×+…+(n+2)×. 兩式相減得S=3×+-. ∴S=3+- =3+-=4-.] (對應(yīng)學(xué)生用書第74頁) 分組轉(zhuǎn)化求和  (20xx·北京高考)已知{an}是等差數(shù)列,{bn}是等比數(shù)列,且b2=3,b3

7、=9,a1=b1,a14=b4. (1)求{an}的通項公式; (2)設(shè)cn=an+bn,求數(shù)列{cn}的前n項和. [解] (1)設(shè)等比數(shù)列{bn}的公比為q,則q===3, 所以b1==1,b4=b3q=27,所以bn=3n-1(n=1,2,3,…). 2分 設(shè)等差數(shù)列{an}的公差為D. 因?yàn)閍1=b1=1,a14=b4=27, 所以1+13d=27,即d=2. 所以an=2n-1(n=1,2,3,…). 5分 (2)由(1)知an=2n-1,bn=3n-1. 因此cn=an+bn=2n-1+3n-1. 7分 從而數(shù)列{cn}的前n項和

8、 Sn=1+3+…+(2n-1)+1+3+…+3n-1 =+=n2+. 12分 [規(guī)律方法] 分組轉(zhuǎn)化法求和的常見類型 (1)若an =bn±cn,且{bn},{cn}為等差或等比數(shù)列,則可采用分組求和法求{an}的前n項和. (2)通項公式為an=的數(shù)列,其中數(shù)列{bn},{cn}是等比數(shù)列或等差數(shù)列,可采用分組求和法求和. 易錯警示:注意在含有字母的數(shù)列中對字母的分類討論. [變式訓(xùn)練1] (20xx·浙江高考)設(shè)數(shù)列{an}的前n項和為Sn,已知S2=4,an+1=2Sn+1,n∈N*. (1)求通項公式an; (2)求數(shù)列{|an-n-2|}的前n項和.

9、 [解] (1)由題意得則 2分 又當(dāng)n≥2時,由an+1-an=(2Sn+1)-(2Sn-1+1)=2an,得an+1=3an, 所以數(shù)列{an}的通項公式為an=3n-1,n∈N*. 5分 (2)設(shè)bn=|3n-1-n-2|,n∈N*,則b1=2,b2=1. 當(dāng)n≥3時,由于3n-1>n+2,故bn=3n-1-n-2,n≥3. 8分 設(shè)數(shù)列{bn}的前n項和為Tn,則T1=2,T2=3, 當(dāng)n≥3時,Tn=3+-=, 所以Tn= 12分 裂項相消法求和  (20xx·鄭州模擬)若An和Bn分別表示數(shù)列{an}和{bn}的前n項的和,對任意正整數(shù)n,a

10、n=2(n+1),3An-Bn=4n. (1)求數(shù)列{bn}的通項公式; (2)記cn=,求{cn}的前n項和Sn. [解] (1)由于an=2(n+1),∴{an}為等差數(shù)列,且a1=4. 2分 ∴An===n2+3n, ∴Bn=3An-4n=3(n2+3n)-4n=3n2+5n, 當(dāng)n=1時,b1=B1=8, 當(dāng)n≥2時,bn=Bn-Bn-1=3n2+5n-[3(n-1)2+5(n-1)]=6n+2.由于b1=8適合上式,∴bn=6n+2. 5分 (2)由(1)知cn== =, 7分 ∴Sn= = =-. 12分 [規(guī)律方法]

11、 1.裂項相消法求和就是將數(shù)列中的每一項裂成兩項或多項,使這些裂開的項出現(xiàn)有規(guī)律的相互抵捎,要注意消去了哪些項,保留了哪些項,從而達(dá)到求和的目的. 2.消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊就剩倒數(shù)第幾項. [變式訓(xùn)練2] (20xx·全國卷Ⅲ)設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n. (1)求{an}的通項公式; (2)求數(shù)列的前n項和. 【導(dǎo)學(xué)號:00090175】 [解] (1)因?yàn)閍1+3a2+…+(2n-1)an=2n,故當(dāng)n≥2時, a1+3a2+…+(2n-3)an-1=2(n-1), 2分 兩式

12、相減得(2n-1)an=2, 所以an=(n≥2). 4分 又由題設(shè)可得a1=2,滿足上式, 所以{an}的通項公式為an=. 6分 (2)記的前n項和為Sn. 由(1)知==-, 9分 則Sn=-+-+…+-=. 12分 錯位相減法求和  (20xx·山東高考)已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1. (1)求數(shù)列{bn}的通項公式; (2)令cn=,求數(shù)列{cn}的前n項和Tn. [解] (1)由題意知當(dāng)n≥2時,an=Sn-Sn-1=6n+5. 當(dāng)n=1時,a1=S1=11,符合上式.

13、 所以an=6n+5. 2分 設(shè)數(shù)列{bn}的公差為D. 由即 解得所以bn=3n+1. 5分 (2)由(1)知cn==3(n+1)·2n+1. 7分 又Tn=c1+c2+…+cn, 得Tn=3×[2×22+3×23+…+(n+1)×2n+1], 2Tn=3×[2×23+3×24+…+(n+1)×2n+2], 9分 兩式作差,得-Tn=3×[2×22+23+24+…+2n+1-(n+1)×2n+2] =3× =-3n·2n+2,所以Tn=3n·2n+2. 12分 [規(guī)律方法] 1.如果數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,求數(shù)列{an

14、·bn}的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列{bn}的公比,若{bn}的公比為參數(shù),應(yīng)分公比等于1和不等于1兩種情況討論. 2.在書寫“Sn”與“qSn”的表達(dá)式時應(yīng)特別注意將兩式“錯項對齊”,即公比q的同次冪項相減,轉(zhuǎn)化為等比數(shù)列求和. [變式訓(xùn)練3] (20xx·天津高考)已知{an}為等差數(shù)列,前n項和為Sn(n∈N*),{bn}是首項為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4. (1)求{an}和{bn}的通項公式; (2)求數(shù)列{a2nbn}的前n項和(n∈N*). [解] (1)設(shè)等差數(shù)列{an

15、}的公差為d,等比數(shù)列{bn}的公比為q. 由已知b2+b3=12,得b1(q+q2)=12. 而b1=2,所以q2+q-6=0,解得q=-3或q=2. 又因?yàn)閝>0,所以q=2. 所以bn=2n. 3分 由b3=a4-2a1,可得3d-a1=8.①. 由S11=11b4,可得a1+5d=16.②, 聯(lián)立①②,解得a1=1,d=3, 由此可得an=3n-2. 6分 所以,數(shù)列{an}的通項公式為an=3n-2,數(shù)列{bn}的通項公式為bn=2n. (2)設(shè)數(shù)列{a2nbn}的前n項和為Tn.由a2n=6n-2, 得Tn=4×2+10×22+16×23+…+(6n-2)×2n, 2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1. 8分 上述兩式相減,得 -Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16, 10分 所以Tn=(3n-4)2n+2+16. 所以,數(shù)列{a2nbn}的前n項和為(3n-4)2n+2+16. 12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!