新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析

上傳人:痛*** 文檔編號:62620764 上傳時間:2022-03-15 格式:DOC 頁數(shù):8 大小:250KB
收藏 版權(quán)申訴 舉報 下載
新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析_第1頁
第1頁 / 共8頁
新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析_第2頁
第2頁 / 共8頁
新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《新版一輪北師大版理數(shù)學(xué)教案:第2章 第3節(jié) 函數(shù)的奇偶性與周期性 Word版含解析(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 第三節(jié) 函數(shù)的奇偶性與周期性 [考綱傳真] 1.結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.2.會運(yùn)用函數(shù)圖像理解和研究函數(shù)的奇偶性.3.了解函數(shù)周期性、最小正周期的含義,會判斷、應(yīng)用簡單函數(shù)的周期性. 1.奇函數(shù)、偶函數(shù)的概念 圖像關(guān)于原點(diǎn)對稱的函數(shù)叫作奇函數(shù). 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù). 2.奇(偶)函數(shù)的性質(zhì) (1)對于函數(shù)f(x),f(x)為奇函數(shù)

3、?f(-x)=-f(x); f(x)為偶函數(shù)?f(-x)=f(x). (2)奇函數(shù)在關(guān)于原點(diǎn)對稱的兩個區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的兩個區(qū)間上有相反的單調(diào)性. (3)如果奇函數(shù)y=f(x)在原點(diǎn)有定義,則f(0)=0. 3.函數(shù)的周期性 (1)對于函數(shù)f(x),如果存在非零實數(shù)T,對定義域內(nèi)的任意一個x值,都有f(x+T)=f(x),則f(x)為周期函數(shù). (2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期. (3)若T是函數(shù)y=f(x)的一個周期,則nT(n∈Z,且n≠0)也是函數(shù)y=f(x)的一個周

4、期. 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)偶函數(shù)圖像不一定過原點(diǎn),奇函數(shù)的圖像一定過原點(diǎn).(  ) (2)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)關(guān)于直線x=a對稱.(  ) (3)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)關(guān)于點(diǎn)(b,0)中心對稱.(  ) (4)函數(shù)f(x)在定義域上滿足f(x+a)=-f(x),則f(x)是周期為2a(a>0)的周期函數(shù).(  ) [答案] (1)× (2)√ (3)√ (4)√ 2.已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值是(  ) 【導(dǎo)

5、學(xué)號:57962035】 A.-   B.   C.    D.- B [依題意b=0,且2a=-(a-1), ∴b=0且a=,則a+b=.] 3.(20xx·廣東高考)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是(  ) A.y= B.y=x+ C.y=2x+ D.y=x+ex D [A選項定義域為R,由于f(-x)===f(x),所以是偶函數(shù).B選項定義域為{x|x≠0},由于f(-x)=-x-=-f(x),所以是奇函數(shù).C選項定義域為R,由于f(-x)=2-x+=+2x=f(x),所以是偶函數(shù).D選項定義域為R,由于f(-x)=-x+e-x=-x,所以是非奇非偶函數(shù).] 4

6、.(20xx·四川高考)若函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0

7、偶性的判斷  判斷下列函數(shù)的奇偶性: (1)f(x)=x3-2x; (2)f(x)=(x+1); (3)f(x)= [解] (1)定義域為R,關(guān)于原點(diǎn)對稱, 又f(-x)=(-x)3-2(-x)=-x3+2x=-(x3-2x)=-f(x). ∴該函數(shù)為奇函數(shù). 4分 (2)由≥0可得函數(shù)的定義域為(-1,1]. ∵函數(shù)定義域不關(guān)于原點(diǎn)對稱, ∴函數(shù)為非奇非偶函數(shù). 8分 (3)易知函數(shù)的定義域為(-∞,0)∪(0,+∞),關(guān)于原點(diǎn)對稱,又當(dāng)x>0時,f(x)=x2+x, 則當(dāng)x<0時,-x>0, 故f(-x)=x2-x=f(x); 當(dāng)x<0時,f(x)=x2-x,則

8、當(dāng)x>0時,-x<0, 故f(-x)=x2+x=f(x),故原函數(shù)是偶函數(shù). 12分 [規(guī)律方法] 1.利用定義判斷函數(shù)奇偶性的步驟: 2.判斷分段函數(shù)的奇偶性應(yīng)分段分別證明f(-x)與f(x)的關(guān)系,只有對各段上的x都滿足相同的關(guān)系時,才能判斷其奇偶性;也可以利用函數(shù)的圖像進(jìn)行判斷. [變式訓(xùn)練1] (1)(20xx·全國卷Ⅰ)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是(  ) A.f(x)g(x)是偶函數(shù) B.|f(x)|g(x)是奇函數(shù) C.f(x)|g(x)|是奇函數(shù) D.|f(x)g(x)|是奇函數(shù) (2)判斷

9、函數(shù)f(x)=+的奇偶性. (1)C [A:令h(x)=f(x)·g(x),則h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(huán)(x), ∴h(x)是奇函數(shù),A錯. B:令h(x)=|f(x)|g(x),則h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x), ∴h(x)是偶函數(shù),B錯. C:令h(x)=f(x)|g(x)|,則h(-x)=f(-x)|g(-x)|=-f(x)|g(x)|=-h(huán)(x),∴h(x)是奇函數(shù),C正確. D:令h(x)=|f(x)·g(x)|,則h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x

10、)|=|f(x)·g(x)|=h(x), ∴h(x)是偶函數(shù),D錯.] (2)由得x2=3,∴x=±,3分 即函數(shù)f(x)的定義域為{-,}, 從而f(x)=+=0. 8分 因此f(-x)=-f(x)且f(-x)=f(x), ∴函數(shù)f(x)既是奇函數(shù)又是偶函數(shù). 12分 函數(shù)奇偶性的應(yīng)用  (1)(20xx·全國卷Ⅰ)若函數(shù)f(x)=xln(x+)為偶函數(shù),則a=________. (2)已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-4x,則f(x)=________. (1)1 (2) [(1)∵f(x)為偶函數(shù),∴f(-x)-f(x)=0恒成立

11、, ∴-xln(-x+)-xln(x+)=0恒成立,∴xln a=0恒成立,∴l(xiāng)n a=0,即a=1. (2)∵f(x)是定義在R上的奇函數(shù),∴f(0)=0. 又當(dāng)x<0時,-x>0,∴f(-x)=x2+4x.又f(x)為奇函數(shù), ∴f(-x)=-f(x), 即f(x)=-x2-4x(x<0), ∴f(x)=] [規(guī)律方法] 1.已知函數(shù)的奇偶性求參數(shù),一般采用待定系數(shù)法求解,根據(jù)f(x)±f(x)=0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進(jìn)而得出參數(shù)的值; 2.已知函數(shù)的奇偶性求函數(shù)值或解析式,將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求出,

12、或充分利用奇偶性得出關(guān)于f(x)的方程(組),從而可得f(x)的值或解析式. [變式訓(xùn)練2] 設(shè)f(x)為定義在R上的奇函數(shù).當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=(  ) A.-3 B.-1   C.1   D.3 A [因為f(x)為定義在R上的奇函數(shù),所以有f(0)=20+2×0+b=0,解得b=-1,所以當(dāng)x≥0時,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3.] 函數(shù)的周期性及其應(yīng)用  設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=2x-x2,則f(0)+f(1

13、)+f(2)+…+f(2 017)=________. 【導(dǎo)學(xué)號:57962036】 1 009 [∵f(x+2)=f(x),∴函數(shù)f(x)的周期T=2. 又當(dāng)x∈[0,2)時,f(x)=2x-x2,∴f(0)=0,f(1)=1,f(0)+f(1)=1. ∴f(0)+f(1)=f(2)+f(3)=f(4)+f(5)=…=f(2 016)+f(2 017)=1, ∴f(0)+f(1)+f(2)+…+f(2 017)=1 009.] [遷移探究1] 若將本例中“f(x+2)=f(x)”改為“f(x+1)=-f(x)”,則結(jié)論如何? [解] ∵f(x+1)=-f(x), ∴f(x+

14、2)=f[(x+1)+1]=-f(x+1)=f(x). 5分 故函數(shù)f(x)的周期為2. 8分 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009. 12分 [遷移探究2] 若將本例中“f(x+2)=f(x)”改為“f(x+1)=”,則結(jié)論如何? [解] ∵f(x+1)=, ∴f(x+2)=f[(x+1)+1]==f(x). 5分 故函數(shù)f(x)的周期為2. 8分 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009. 12分 [規(guī)律方法] 1.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T

15、,根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì). 2.函數(shù)周期性的三個常用結(jié)論: (1)若f(x+a)=-f(x),則T=2a, (2)若f(x+a)=,則T=2a, (3)若f(x+a)=-,則T=2a(a>0). [變式訓(xùn)練3] 定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)-3≤x<-1時,f(x)=-(x+2)2;當(dāng)-1≤x<3時,f(x)=x.則f(1)+f(2)+f(3)+…+f(2 018)=________. 339 [∵f(x+6)=f(x),∴T=6. ∵當(dāng)-3≤x<-1時,f(x)=-(x+2)2; 當(dāng)-1≤x<3時,f(x)=x,

16、∴f(1)=1,f(2)=2,f(3)=f(-3)=-1, f(4)=f(-2)=0,f(5)=f(-1)=-1, f(6)=f(0)=0, ∴f(1)+f(2)+…+f(6)=1, ∴f(1)+f(2)+f(3)+…+f(2 015)+f(2 016)=1×=336. 又f(2 017)+f(2 018)=f(1)+f(2)=3, ∴f(1)+f(2)+f(3)+…+f(2 018)=339.] [思想與方法] 1.函數(shù)奇偶性的三個常用性質(zhì) (1)若奇函數(shù)f(x)在x=0處有定義,則f(0)=0. (2)若f(x)為偶函數(shù),則f(|x|)=f(x). (3)設(shè)f(x

17、),g(x)的定義域分別是D1,D2,那么在它們的公共定義域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇. 2.利用函數(shù)奇偶性可以解決以下問題 (1)求函數(shù)值;(2)求解析式;(3)求函數(shù)解析式中參數(shù)的值;(4)畫函數(shù)圖像,確定函數(shù)單調(diào)性. 3.在解決具體問題時,要注意結(jié)論“若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期”的應(yīng)用. [易錯與防范] 1.判斷函數(shù)的奇偶性,應(yīng)首先判斷函數(shù)定義域是否關(guān)于原點(diǎn)對稱.定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的一個必要條件. 2.f(0)=0既不是f(x)是奇函數(shù)的充分條件,也不是必要條件.應(yīng)用時要注意函數(shù)的定義域并進(jìn)行檢驗. 3.判斷分段函數(shù)的奇偶性時,要以整體的觀點(diǎn)進(jìn)行判斷,不能用函數(shù)在定義域某一區(qū)間上不是奇偶函數(shù)而否定函數(shù)在整個定義域上的奇偶性.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!