新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版
《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第2章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 第3節(jié) 函數(shù)的奇偶性與周期性學(xué)案 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 1
2、 1 第三節(jié) 函數(shù)的奇偶性與周期性 [考綱傳真] 1.了解函數(shù)奇偶性的含義.2.會運用基本初等函數(shù)的圖像分析函數(shù)的奇偶性.3.了解函數(shù)周期性、最小正周期的含義,會判斷、應(yīng)用簡單函數(shù)的周期性. (對應(yīng)學(xué)生用書第11頁) [基礎(chǔ)知識填充] 1.奇函數(shù)、偶函數(shù)的概念 圖像關(guān)于原點對稱的函數(shù)叫作奇函數(shù). 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù). 2.判斷函數(shù)的奇偶性
3、 判斷函數(shù)的奇偶性,一般都按照定義嚴(yán)格進行,一般步驟是 (1)考察定義域是否關(guān)于原點對稱. (2)考察表達式f(-x)是否等于f(x)或-f(x): 若f(-x)=-f(x),則f(x)為奇函數(shù); 若f(-x)=f(x),則f(x)為偶函數(shù); 若f(-x)=-f(x)且f(-x)=f(x),則f(x)既是奇函數(shù)又是偶函數(shù); 若f(-x)≠-f(x)且f(-x)≠f(x),則f(x)既不是奇函數(shù)又不是偶函數(shù),既非奇非偶函數(shù). 3.函數(shù)的周期性 (1)周期函數(shù):對于函數(shù)f(x),如果存在非零實數(shù)T,對定義域內(nèi)的任意一個x,都有f(x+T)=f(x),就把f(x)稱為周
4、期函數(shù),T稱為這個函數(shù)的周期. (2)最小正周期:如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期. [知識拓展] 1.函數(shù)奇偶性常用結(jié)論 (1)如果函數(shù)f(x)是偶函數(shù),那么f(x)=f(|x|). (2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性. (3)在公共定義域內(nèi)有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇. 2.函數(shù)周期性常用結(jié)論 對f(x)定義域內(nèi)任一自變量的值x: (1)若f(x+a)=-f(x),則T=2a(a>0). (2)若f(x+a
5、)=,則T=2a(a>0). (3)若f(x+a)=-,則T=2a(a>0). [基本能力自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)偶函數(shù)圖像不一定過原點,奇函數(shù)的圖像一定過原點.( ) (2)若函數(shù)y=f(x+a)是偶函數(shù),則函數(shù)y=f(x)關(guān)于直線x=a對稱.( ) (3)若函數(shù)y=f(x+b)是奇函數(shù),則函數(shù)y=f(x)關(guān)于點(b,0)中心對稱.( ) (4)函數(shù)f(x)在定義域上滿足f(x+a)=-f(x),則f(x)是周期為2a(a>0)的周期函數(shù).( ) [答案] (1)× (2)√ (3)√ (4)√
6、 2.已知f(x)=ax2+bx是定義在[a-1,2a]上的偶函數(shù),那么a+b的值是( ) A.- B. C. D.- B [依題意b=0,且2a=-(a-1), ∴b=0且a=,則a+b=.] 3.(20xx·廣東高考)下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( ) A.y=x+sin 2x B.y=x2-cos x C.y=2x+ D.y=x2+sin x D [A項,定義域為R,f(-x)=-x-sin 2x=-f(x),為奇函數(shù),故不符合題意; B項,定義域為R,f(-x)=x2-cos x=f(x),為偶函數(shù),故不符合題意;
7、 C項,定義域為R,f(-x)=2-x+=2x+=f(x),為偶函數(shù),故不符合題意; D項,定義域為R,f(-x)=x2-sin x,-f(x)=-x2-sin x,因為f(-x)≠-f(x),且f(-x)≠f(x),故為非奇非偶函數(shù).] 4.(20xx·全國卷Ⅱ)已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(-∞,0)時,f(x)=2x3+x2,則f(2)=________. 12 [法一:令x>0,則-x<0. ∴f(-x)=-2x3+x2. ∵函數(shù)f(x)是定義在R上的奇函數(shù), ∴f(-x)=-f(x). ∴f(x)=2x3-x2(x>0). ∴f(2)=
8、2×23-22=12. 法二:f(2)=-f(-2) =-[2×(-2)3+(-2)2]=12.] 5.(教材改編)已知函數(shù)f(x)是奇函數(shù),在(0,+∞)上是減函數(shù),且在區(qū)間[a,b](a<b<0)上的值域為[-3,4],則在區(qū)間[-b,-a]上( ) A.有最大值4 B.有最小值-4 C.有最大值-3 D.有最小值-3 B [法一:根據(jù)題意作出y=f(x)的簡圖,由圖知,選B. 法二:當(dāng)x∈[-b,-a]時,-x∈[a,b], 由題意得f(b)≤f(-x)≤f(a), 即-3≤-f(x)≤4, ∴-4≤f(x)≤3, 即在區(qū)間[-b,-a]上
9、f(x)min=-4, f(x)max=3,故選B.] (對應(yīng)學(xué)生用書第12頁) 函數(shù)奇偶性的判斷 判斷下列函數(shù)的奇偶性: (1)f(x)=(x+1); (2)f(x)=lg(-2x); (3)f(x)=+; (4)f(x)= 【導(dǎo)學(xué)號:00090021】 [解] (1)由≥0可得函數(shù)的定義域為(-1,1]. ∵函數(shù)定義域不關(guān)于原點對稱, ∴函數(shù)為非奇非偶函數(shù). (2)函數(shù)的定義域為R,且f(-x)=lg(+2x)=lg =-lg(-2x)=-f(x). 故原函數(shù)為奇函數(shù). (3)由得x2=3,∴x=±, 即函數(shù)f(x)的定義
10、域為{-,}, 從而f(x)=+=0. 因此f(-x)=-f(x)且f(-x)=f(x), ∴函數(shù)f(x)既是奇函數(shù)又是偶函數(shù). (4)易知函數(shù)的定義域為(-∞,0)∪(0,+∞),關(guān)于原點對稱,又當(dāng)x>0時,f(x)=x2+x, 則當(dāng)x<0時,-x>0, 故f(-x)=x2-x=f(x); 當(dāng)x<0時,f(x)=x2-x,則當(dāng)x>0時,-x<0, 故f(-x)=x2+x=f(x),故原函數(shù)是偶函數(shù). [規(guī)律方法] 1.利用定義判斷函數(shù)奇偶性的步驟: 2.判斷分段函數(shù)的奇偶性應(yīng)分段分別證明f(-x)與f(x)的關(guān)系,只有對各段上的x都滿足相同的關(guān)系時
11、,才能判斷其奇偶性;也可以利用函數(shù)的圖像進行判斷. [變式訓(xùn)練1] (1)(20xx·商丘模擬)已知函數(shù)f(x)=ln(e+x)+ln(e-x),則f(x)是 ( ) A.奇函數(shù),且在(0,e)上是增加的 B.奇函數(shù),且在(0,e)上是減少的 C.偶函數(shù),且在(0,e)上是增加的 D.偶函數(shù),且在(0,e)上是減少的 (2)(20xx·全國卷Ⅰ)設(shè)函數(shù)f(x),g(x)的定義域都為R,且f(x)是奇函數(shù),g(x)是偶函數(shù),則下列結(jié)論中正確的是( ) 【導(dǎo)學(xué)號:00090022】 A.f(x)g(x)是偶函數(shù) B.|f(x)|g(x)是奇函數(shù) C.f(x)
12、|g(x)|是奇函數(shù) D.|f(x)g(x)|是奇函數(shù) (1)D (2)C [(1)f(x)的定義域為(-e,e),關(guān)于原點對稱. f(-x)=ln(e-x)+ln(e+x)=f(x),∴函數(shù)f(x)是偶函數(shù). 又f(x)=ln(e2-x2),所以f(x)在(0,e)上是減少的. (2)A:令h(x)=f(x)·g(x),則h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(huán)(x), ∴h(x)是奇函數(shù),A錯. B:令h(x)=|f(x)|g(x),則h(-x)=|f(-x)|g(-x)=|-f(x)|·g(x)=|f(x)|g(x)=h(x), ∴h
13、(x)是偶函數(shù),B錯. C:令h(x)=f(x)|g(x)|,則h(-x)=f(-x)|g(-x)|=-f(x)|·g(x)|=-h(huán)(x),∴h(x)是奇函數(shù),C正確. D:令h(x)=|f(x)·g(x)|,則h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x), ∴h(x)是偶函數(shù),D錯.] 函數(shù)奇偶性的應(yīng)用 (1)(20xx·全國卷Ⅰ)若函數(shù)f(x)=xln(x+)為偶函數(shù),則a=________. (2)已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2-4x,則f(x)=________. (1)1
14、 (2) [(1)∵f(x)為偶函數(shù), ∴f(-x)-f(x)=0恒成立, ∴-xln(-x+)-xln(x+)=0恒成立, ∴xln a=0恒成立,∴l(xiāng)n a=0,即a=1. (2)∵f(x)是定義在R上的奇函數(shù),∴f(0)=0. 又當(dāng)x<0時,-x>0,∴f(-x)=x2+4x.又f(x)為奇函數(shù), ∴f(-x)=-f(x), 即f(x)=-x2-4x(x<0), ∴f(x)=] [規(guī)律方法] 1.已知函數(shù)的奇偶性求參數(shù),一般采用待定系數(shù)法求解,根據(jù)f(x)±f(x)=0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對等性得參數(shù)的值或方程(組),進而得出參數(shù)的值.
15、 2.已知函數(shù)的奇偶性求函數(shù)值或解析式,將待求區(qū)間上的自變量轉(zhuǎn)化到已知區(qū)間上,再利用奇偶性求出,或充分利用奇偶性得出關(guān)于f(x)的方程(組),從而可得f(x)的值或解析式. [變式訓(xùn)練2] (1)設(shè)f(x)為定義在R上的奇函數(shù).當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=( ) A.-3 B.-1 C.1 D.3 (2)(20xx·青島模擬)若f(x)=ln(e3x+1)+ax是偶函數(shù),則a=________. (1)A (2)- [(1)因為f(x)為定義在R上的奇函數(shù),所以有f(0)=20+2×0+b=0,解得b=-1,所以當(dāng)x≥0時,f(
16、x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3. (2)f(-x)=ln(e-3x+1)-ax=ln-ax=ln(1+e3x)-3x-ax,依題意得,對任意x∈R,都有f(-x)=f(x),即ln(1+e3x)-3x-ax=ln(1+e3x)+ax, 化簡得2ax+3x=0(x∈R),因此2a+3=0,解得a=-.] 函數(shù)的周期性及其應(yīng)用 (1)(20xx·山東高考)已知f(x)是定義在R上的偶函數(shù),且f(x+4)=f(x-2).若當(dāng)x∈[-3,0]時,f(x)=6-x,則f(919)=________. (2)設(shè)定義在R上的函數(shù)f(x)滿
17、足f(x+2)=f(x),且當(dāng)x∈[0,2)時,f(x)=2x-x2,則f(0)+f(1)+f(2)+…+f(2 017)=________. (1)6 (2)1 009 [(1)∵f(x+4)=f(x-2), ∴f((x+2)+4)=f((x+2)-2),即f(x+6)=f(x), ∴f(x)是周期為6的周期函數(shù), ∴f(919)=f(153×6+1)=f(1). 又f(x)是定義在R上的偶函數(shù), ∴f(1)=f(-1)=6,即f(919)=6. (2)∵f(x+2)=f(x),∴函數(shù)f(x)的周期T=2. 又當(dāng)x∈[0,2)時,f(x)=2x-x2,∴f(0
18、)=0,f(1)=1,f(0)+f(1)=1. ∴f(0)+f(1)=f(2)+f(3)=f(4)+f(5)=…=f(2 016)+f(2 017)=1, ∴f(0)+f(1)+f(2)+…+f(2 017)=1 009.] [母題探究1] 若將本例(2)中“f(x+2)=f(x)”改為“f(x+1)=-f(x)”,則結(jié)論如何? [解] ∵f(x+1)=-f(x), ∴f(x+2)=f[(x+1)+1]=-f(x+1)=f(x). 故函數(shù)f(x)的周期為2. 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009. [母題探究2] 若將本例(2)
19、中“f(x+2)=f(x)”改為“f(x+1)=”,則結(jié)論如何? [解] ∵f(x+1)=, ∴f(x+2)=f[(x+1)+1]==f(x). 故函數(shù)f(x)的周期為2. 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009. [規(guī)律方法] 1.判斷函數(shù)的周期只需證明f(x+T)=f(x)(T≠0)便可證明函數(shù)是周期函數(shù),且周期為T,根據(jù)函數(shù)的周期性,可以由函數(shù)局部的性質(zhì)得到函數(shù)的整體性質(zhì). 2.在解決具體問題時,要注意“若T是函數(shù)的周期,則kT(k∈Z且k≠0)也是函數(shù)的周期”的應(yīng)用. [變式訓(xùn)練3] (20xx·長沙模擬(一))已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=則下列函數(shù)值為1的是( ) A.f(2.5) B.f(f(2.5)) C.f(f(1.5)) D.f(2) D [由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2為周期的周期函數(shù),從而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故選D.]
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 624E竣工驗收備案表內(nèi)頁四.xls
- 624D竣工驗收備案表內(nèi)頁三.xls
- 624C竣工驗收備案表內(nèi)頁二.xls
- 624B竣工驗收備案表內(nèi)頁一.xls
- 624A竣工驗收備案表封面.xls
- 623C建設(shè)工程竣工驗收報告內(nèi)頁2.xls
- 623B建設(shè)工程竣工驗收報告內(nèi)頁1.xls
- 623A建設(shè)工程竣工驗收報告封面.xls
- 622B質(zhì)量保修書內(nèi)頁.xls
- 622A質(zhì)量保修書封面.xls
- 621B工程質(zhì)量驗收計劃書內(nèi)頁1.xls
- 621A工程質(zhì)量驗收計劃書封面.xls
- 620C設(shè)計文件質(zhì)量檢查報告內(nèi)頁2.xls
- 620B設(shè)計文件質(zhì)量檢查報告內(nèi)頁1.xls
- 620A設(shè)計文件質(zhì)量檢查報告封面.xls