新編高考數(shù)學人教A版理科含答案導學案【第四章】三角函數(shù)、解三角形 學案21
《新編高考數(shù)學人教A版理科含答案導學案【第四章】三角函數(shù)、解三角形 學案21》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學人教A版理科含答案導學案【第四章】三角函數(shù)、解三角形 學案21(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、新編高考數(shù)學復(fù)習資料 學案21 兩角和與差的正弦、余弦和正切公式 導學目標: 1.會用向量數(shù)量積推導出兩角差的余弦公式.2.能利用兩角差的余弦公式導出兩角差的正弦、正切公式.3.能利用兩角差的余弦公式導出兩角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、變形應(yīng)用. 自主梳理 1.(1)兩角和與差的余弦 cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)兩角和與差的正弦 sin(α+β)=__
2、___________________________________________, sin(α-β)=_____________________________________________. (3)兩角和與差的正切 tan(α+β)=_____________________________________________, tan(α-β)=_____________________________________________. (α,β,α+β,α-β均不等于kπ+,k∈Z) 其變形為: tan α+tan β=tan(α+β)(1-tan αtan β),
3、tan α-tan β=tan(α-β)(1+tan αtan β). 2.輔助角公式 asin α+bcos α=sin(α+φ), 其中角φ稱為輔助角. 自我檢測 1.(2010·福建)計算sin 43°cos 13°-cos 43°sin 13°的結(jié)果等于 ( ) A. B. C. D. 2.已知cos+sin α=,則sin的值是 ( ) A.- B. C.- D. 3.函數(shù)f(x)=sin 2x-cos 2x的最小正周期是
4、 ( ) A. B.π C.2π D.4π 4.(2011·臺州月考)設(shè)0≤α<2π,若sin α>cos α,則α的取值范圍是 ( ) A. B. C. D. 5.(2011·廣州模擬)已知向量a=(sin x,cos x),向量b=(1,),則|a+b|的最大值為( ) A.1 B. C.3 D.9 探究點一 給角求值問題(三角函數(shù)式的化簡、求值) 例1 求值: (1)[2sin 50°+sin 10°(1+tan 10°)]; (2)sin(θ+75°)+co
5、s(θ+45°)-·cos(θ+15°). 變式遷移1 求值:(1); (2)tan(-θ)+tan(+θ)+tan(-θ)tan(+θ). 探究點二 給值求值問題(已知某角的三角函數(shù)值,求另一角的三角函數(shù)值) 例2 已知0<β<<α<,cos=, sin=,求sin(α+β)的值. 變式遷移2 (2011·廣州模擬)已知tan=2,tan β=. (1)求tan α的值; (2)求的值. 探究點三 給值求角問題(已知某角的三角函數(shù)值,求另一角的值) 例3 已知0<α<<β<π,tan =,cos(β-α)=.
6、 (1)求sin α的值; (2)求β的值. 變式遷移3 (2011·岳陽模擬)若sin A=,sin B=,且A、B均為鈍角,求A+B的值. 轉(zhuǎn)化與化歸思想的應(yīng)用 例 (12分)已知向量a=(cos α,sin α),b=(cos β,sin β),|a-b|=. (1)求cos(α-β)的值; (2)若-<β<0<α<,且sin β=-,求sin α的值. 【答題模板】 解 (1)∵|a-b|=,∴a2-2a·b+b2=.[2分] 又∵a=(cos α,sin α),b=(cos β,sin β),∴a2=b2=1, a·b=cos
7、αcos β+sin αsin β=cos(α-β),[4分] 故cos(α-β)===.[6分] (2)∵-<β<0<α<,∴0<α-β<π.∵cos(α-β)=,∴sin(α-β)=.[8分] 又∵sin β=-,-<β<0,∴cos β=.[9分] 故sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β =×+×=.[12分] 【突破思維障礙】 本題是三角函數(shù)問題與向量的綜合題,唯一一個等式條件|a-b|=,必須從這個等式出發(fā),利用向量知識化簡再結(jié)合兩角差的余弦公式可求第(1)問,在第(2)問中需要把未知角向已知角轉(zhuǎn)化再利用角的范圍來
8、求,即將α變?yōu)?α-β)+β. 【易錯點剖析】 |a-b|平方逆用及兩角差的余弦公式是易錯點,把未知角轉(zhuǎn)化成已知角并利用角的范圍確定三角函數(shù)符號也是易錯點. 1.轉(zhuǎn)化思想是實施三角變換的主導思想,變換包括:函數(shù)名稱變換,角的變換,“1”的變換,和積變換,冪的升降變換等等. 2.變換則必須熟悉公式.分清和掌握哪些公式會實現(xiàn)哪種變換,也要掌握各個公式的相互聯(lián)系和適用條件. 3.恒等變形前需已知式中角的差異,函數(shù)名稱的差異,運算結(jié)構(gòu)的差異,尋求聯(lián)系,實現(xiàn)轉(zhuǎn)化. 4.基本技巧:切割化弦,異名化同,異角化同或盡量減少名稱、角數(shù),化為同次冪,化為比例式,化為常數(shù). (滿分:75分)
9、 一、選擇題(每小題5分,共25分) 1.(2011·佛山模擬)已知sin+sin α=-,則cos等于 ( ) A.- B.- C. D. 2.已知cos-sin α=,則sin的值是 ( ) A.- B. C.- D. 3.(2011·寧波月考)已知向量a=,b=(4,4cos α-),若a⊥b,則sin等于 ( ) A.- B.
10、- C. D. 4.函數(shù)y=sin x+cos x圖象的一條對稱軸方程是 ( ) A.x= B.x= C.x=- D.x=- 5.在△ABC中,3sin A+4cos B=6,4sin B+3cos A=1,則C的大小為 ( ) A. B.π C.或π D.或π 題號 1 2 3 4 5 答案 二、填空題(每小題4分,共12分) 6.(2010·重慶)如圖, 圖中的實線是由三段圓弧連接而成的一條封閉
11、曲線C,各段弧所在的圓經(jīng)過同一點P(點P不在C上)且半徑相等.設(shè)第i段弧所對的圓心角為αi (i=1,2,3),則cos cos - sin ·sin =________. 7.設(shè)sin α= ,tan(π-β)=,則tan(α-β)=________. 8.(2011·惠州月考)已知tan α、tan β是方程x2+3x+4=0的兩根,且α、β∈,則tan(α+β)=__________,α+β的值為________. 三、解答題(共38分) 9.(12分)(1)已知α∈,β∈且sin(α+β)=,cos β=-.求sin α; (2)已知α,β∈(0,π),且tan(α-β)=
12、,tan β=-,求2α-β的值. 10.(12分)(2010·四川)(1)①證明兩角和的余弦公式C(α+β):cos(α+β)=cos αcos β- sin αsin β;②由C(α+β)推導兩角和的正弦公式S(α+β):sin(α+β)=sin αcos β+cos αsin β. (2)已知△ABC的面積S=,·=3,且cos B=,求cos C. 11.(14分)(2011·濟南模擬)設(shè)函數(shù)f(x)=a·b,其中向量a=(2cos x,1),b=(cos x,sin 2x),x∈R. (1)若函數(shù)f(x)=1-,且x∈,求x; (2)求函數(shù)
13、y=f(x)的單調(diào)增區(qū)間,并在給出的坐標系中畫出y=f(x)在區(qū)間[0,π]上的圖象. 答案 自主梳理 1.(1)cos αcos β-sin αsin β cos αcos β+sin αsin β (2)sin αcos β+cos αsin β sin αcos β-cos αsin β (3) 2. 自我檢測 1.A 2.C 3.B 4.C 5.C 課堂活動區(qū) 例1 解題導引 在三角函數(shù)求值的問題中,要注意“三看”口訣,即(1)看角,把角盡量向特殊角或可計算的角轉(zhuǎn)化,合理拆角,化異為同;(2)看名稱,把算式盡量化成同一名稱或相近的名稱,例如把所
14、有的切都轉(zhuǎn)化為弦,或把所有的弦都轉(zhuǎn)化為切;(3)看式子,看式子是否滿足三角函數(shù)的公式.如果滿足則直接使用,如果不滿足需轉(zhuǎn)化一下角或轉(zhuǎn)換一下名稱,就可以使用. 解 (1)原式 =·sin 80° =· sin 80° =·cos 10° =·cos 10° =·cos 10°=2sin 60° =2×=. (2)原式=sin[(θ+45°)+30°]+cos(θ+45°)-·cos[(θ+45°)-30°] =sin(θ+45°)+cos(θ+45°)+cos(θ+45°)-cos(θ+45°)-sin(θ+45°)=0. 變式遷移1 解 (1)原式= ===. (2)原
15、式=tan[(-θ)+(+θ)][1-tan(-θ)·tan(+θ)]+tan(-θ)tan(+θ)=. 例2 解題導引 對于給值求值問題,即由給出的某些角的三角函數(shù)的值,求另外一些角的三角函數(shù)值,關(guān)鍵在于“變角”,使“所求角”變?yōu)椤耙阎恰?,若角所在象限沒有確定,則應(yīng)分類討論.應(yīng)注意公式的靈活運用,掌握其結(jié)構(gòu)特征,還要學會拆角、拼角等技巧. 解 cos=sin=, ∵0<β<<α<, ∴<+α<π,<+β<π. ∴cos=-=-, cos=-=-. ∴sin[π+(α+β)]=sin =sincos+cossin =×-×=-. ∴sin(α+β)=. 變式遷移2 解
16、(1)由tan=2,得=2, 即1+tan α=2-2tan α,∴tan α=. (2) = == =-tan(α-β)=- =-=. 例3 解題導引 (1)通過求角的某種三角函數(shù)值來求角,在選取函數(shù)時,遵循以下原則: ①已知正切函數(shù)值,選正切函數(shù); ②已知正、余弦函數(shù)值,選正弦或余弦函數(shù);若角的范圍是,選正、余弦皆可;若角的范圍是(0,π),選余弦較好;若角的范圍為,選正弦較好. (2)解這類問題的一般步驟: ①求角的某一個三角函數(shù)值; ②確定角的范圍; ③根據(jù)角的范圍寫出所求的角. 解 (1)∵tan =, ∴sin α=sin=2sin cos ===
17、=.
(2)∵0<α<,sin α=,∴cos α=.
又0<α<<β<π,∴0<β-α<π.
由cos(β-α)=,得sin(β-α)=.
∴sin β=sin[(β-α)+α]
=sin(β-α)cos α+cos(β-α)sin α
=×+×==.
由<β<π得β=π.
(或求cos β=-,得β=π)
變式遷移3 解 ∵A、B均為鈍角且sin A=,sin B=,
∴cos A=-=-=-,
cos B=-=-=-.
∴cos(A+B)=cos Acos B-sin Asin B
=-×-×=.①
又∵
18、,知A+B=.
課后練習區(qū)
1.D 2.D 3.B 4.A 5.A
6.- 7.- 8.?。?
9.解 (1)∵β∈,cos β=-,
∴sin β=.…………………………………………………………………………(2分)
又∵0<α<,<β<π,
∴<α+β<,又sin(α+β)=,
∴cos(α+β)=-
=- =-,…………………………………………………………(4分)
∴sin α=sin[(α+β)-β]
=sin(α+β)cos β-cos(α+β)sin β
=·-·=.…………………………………………………………(6分)
(2)∵tan α=tan[(α-β) 19、+β]
===,……………………………………………………(8分)
∴tan(2α-β)=tan[α+(α-β)]
===1.……………………………………………………(10分)
∵α,β∈(0,π),tan α=<1,tan β=-<0,
∴0<α<,<β<π,
∴-π<2α-β<0,∴2α-β=-.……………………………………………………(12分)
10.(1)
①證明 如圖,在直角坐標系xOy內(nèi)作單位圓O,并作出角α、β與-β,使角α的始邊為Ox,交⊙O于點P1,終邊交⊙O于點P2;角β的始邊為OP2,終邊交⊙O于點P3;角-β的始邊為OP1,終邊交⊙O于點P4.
則P 20、1(1,0),P2(cos α,sin α),P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)),
…………………………………………………………………………………………(2分)
由|P1P3|=|P2P4|及兩點間的距離公式,
得[cos(α+β)-1]2+sin2(α+β)
=[cos(-β)-cos α]2+[sin(-β)-sin α]2,
展開并整理得:
2-2cos(α+β)=2-2(cos αcos β-sin αsin β),
∴cos(α+β)=cos αcos β-sin αsin β.……………………………………………………(4 21、分)
②解 由①易得,cos=sin α,
sin=cos α.
sin(α+β)=cos
=cos
=coscos(-β)-sinsin(-β)
=sin αcos β+cos αsin β.
∴sin(α+β)=sin αcos β+cos αsin β.……………………………………………………(7分)
(2)解 由題意,設(shè)△ABC的角B、C的對邊分別為b、c.
則S=bcsin A=,
·=bccos A=3>0,
∴A∈,cos A=3sin A,……………………………………………………………(9分)
又sin2A+cos2A=1,
∴sin A=,cos A 22、=,
由cos B=,得sin B=.
∴cos(A+B)=cos Acos B-sin Asin B=.
……………………………………………………………………………………………(11分)
故cos C=cos[π-(A+B)]=-cos(A+B)=-.
……………………………………………………………………………………………(12分)
11.解 (1)依題設(shè)得f(x)=2cos2x+sin 2x
=1+cos 2x+sin 2x=2sin+1.
由2sin+1=1-,
得sin=-.……………………………………………………………………(3分)
∵-≤x≤,∴-≤2x+≤.
∴2x+=-,即x=-.………………………………………………………………(6分)
(2)-+2kπ≤2x+≤+2kπ (k∈Z),
即-+kπ≤x≤+kπ (k∈Z),
得函數(shù)單調(diào)增區(qū)間為 (k∈Z).……………………………………(10分)
列表:
x
0
π
y
2
3
2
0
-1
0
2
描點連線,得函數(shù)圖象如圖所示:
…………………………………………………………………………………………(14分)
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。