2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列

上傳人:努力****83 文檔編號:65028369 上傳時間:2022-03-22 格式:DOC 頁數(shù):14 大?。?.46MB
收藏 版權(quán)申訴 舉報 下載
2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列_第1頁
第1頁 / 共14頁
2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列_第2頁
第2頁 / 共14頁
2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列》由會員分享,可在線閱讀,更多相關(guān)《2015年高考數(shù)學(理科)真題分類匯編N單元選修4系列(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 數(shù) 學 N單元 選修4系列 N1 選修4-1 幾何證明選講 15.N1[2015·廣東卷] (幾何證明選講選做題)如圖1-1,已知AB是圓O的直徑,AB=4,EC是圓O的切線,切點為C,BC=1.過圓心O作BC的平行線,分別交EC和AC于點D和點P,則OD=________. 圖1-1 15.8 [解析] 連接OC,因為AB是圓O的直徑,則∠ACB=,而BC∥OD,故CP⊥OD,由題知CD是圓O的切線,∴CP是Rt△ODC斜邊上的高,由射影定理知OC2=OP·OD,而OC=2,OP=BC=,∴OD===8.

2、 15.N1[2015·湖北卷] (選修4-1:幾何證明選講) 如圖1-4,PA是圓的切線,A為切點,PBC是圓的割線,且BC=3PB,則=________. 圖1-4 15. [解析] 由切割線定理知PA2=PB·PC,又BC=3PB,所以PA=2PB.由弦切角定理知∠PAB=∠PCA,又∠APC=∠BPA,所以△PAB∽△PCA,所以==. 21.N1[2015·江蘇卷] A.[選修4-1:幾何證明選講]如圖1-5,在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AE交BC于點D. 求證:△ABD∽△AEB. 圖1-5 N2B.[選修4-2:矩

3、陣與變換]已知x,y∈R,向量α=是矩陣A=的屬于特征值-2的一個特征向量,求矩陣A以及它的另一個特征值. N3C.[選修4-4:坐標系與參數(shù)方程]已知圓C的極坐標方程為ρ2+2ρsin-4=0,求圓C的半徑. N4D.[選修4-5:不等式選講]解不等式x+|2x+3|≥2. 21.A.證明:因為AB=AC,所以∠ABD=∠C. 又因為∠C=∠E,所以∠ABD=∠E, 又∠BAE為公共角,所以△ABD∽△AEB. B.解:由已知,得Aα=-2α,即==,則即所以矩陣A=. 從而矩陣A的特征多項式f(λ)=(λ+2)(λ-1), 所以矩陣A的另一個特征值為1. C.解:以極坐標

4、系的極點為平面直角坐標系的原點O,以極軸為x軸的正半軸,建立直角坐標系xOy. 圓C的極坐標方程為ρ2+2ρ-4=0,化簡得ρ2+2ρsin θ-2ρcos θ-4=0, 則圓C的直角坐標方程為x2+y2-2x+2y-4=0, 即(x-1)2+(y+1)2=6, 所以圓C的半徑為. D.解:原不等式可化為或 解得x≤-5或x≥-. 綜上,原不等式的解集是. 22.N1[2015·全國卷Ⅱ] 選修4-1:幾何證明選講 如圖1-8,O為等腰三角形ABC內(nèi)一點,⊙O與△ABC的底邊BC交于M,N兩點,與底邊上的高AD交于點G,且與AB,AC分別相切于E,F(xiàn)兩點. (1)證明:EF

5、∥BC; (2)若AG等于⊙O的半徑,且AE=MN=2,求四邊形EBCF的面積. 圖1-8 22.解:(1)證明:由于△ABC是等腰三角形,AD⊥BC,所以AD是∠CAB的平分線.又因為⊙O分別與AB,AC相切于點E,F(xiàn),所以AE=AF,故AD⊥EF,從而EF∥BC. (2)由(1)知,AE=AF,AD⊥EF,故AD是EF的垂直平分線.又EF為⊙O的弦,所以O在AD上. 連接OE,OM,則OE⊥AE. 由AG等于⊙O的半徑得AO=2OE,所以∠OAE=30°.因此△ABC和△AEF都是等邊三角形. 因為AE=2,所以AO=4,OE=2. 因為OM=OE=2,DM

6、=MN=,所以OD=1.于是AD=5,AB=. 所以四邊形EBCF的面積為××-×(2)2×=. 22.N1[2015·全國卷Ⅰ] 選修4-1:幾何證明選講 如圖1-7,AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點E. (1)若D為AC的中點,證明:DE是⊙O的切線; (2)若OA=CE,求∠ACB的大?。? 圖1-7 22.解:(1)證明:連接AE,由已知得,AE⊥BC,AC⊥AB. 在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE. 連接OE,則∠OBE=∠OEB. 又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=9

7、0°,即DE是⊙O的切線. (2)設CE=1,AE=x,由已知得AB=2,BE=. 由射影定理可得,AE2=CE·BE,所以x2=,即x4+x2-12=0, 可得x=,所以∠ACB=60°. N2 選修4-2 矩陣 21.N1[2015·江蘇卷] A.[選修4-1:幾何證明選講]如圖1-5,在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AE交BC于點D. 求證:△ABD∽△AEB. 圖1-5 N2B.[選修4-2:矩陣與變換]已知x,y∈R,向量α=是矩陣A=的屬于特征值-2的一個特征向量,求矩陣A以及它的另一個特征值. N3C.[選修4-4:

8、坐標系與參數(shù)方程]已知圓C的極坐標方程為ρ2+2ρsin-4=0,求圓C的半徑. N4D.[選修4-5:不等式選講]解不等式x+|2x+3|≥2. 21.A.證明:因為AB=AC,所以∠ABD=∠C. 又因為∠C=∠E,所以∠ABD=∠E, 又∠BAE為公共角,所以△ABD∽△AEB. B.解:由已知,得Aα=-2α,即==,則即所以矩陣A=. 從而矩陣A的特征多項式f(λ)=(λ+2)(λ-1), 所以矩陣A的另一個特征值為1. C.解:以極坐標系的極點為平面直角坐標系的原點O,以極軸為x軸的正半軸,建立直角坐標系xOy. 圓C的極坐標方程為ρ2+2ρ-4=0,化簡得ρ2+

9、2ρsin θ-2ρcos θ-4=0, 則圓C的直角坐標方程為x2+y2-2x+2y-4=0, 即(x-1)2+(y+1)2=6, 所以圓C的半徑為. D.解:原不等式可化為或 解得x≤-5或x≥-. 綜上,原不等式的解集是. 21.N2、N3、N4[2015·福建卷] (1)選修4-2:矩陣與變換 已知矩陣A=),B=)). (i)求A的逆矩陣A-1; (ii)求矩陣C,使得AC=B. (2)選修4-4:坐標系與參數(shù)方程 在平面直角坐標系xOy中,圓C的參數(shù)方程為(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸

10、)中,直線l的方程為ρsin=m(m∈R). (i)求圓C的普通方程及直線l的直角坐標方程; (ii)設圓心C到直線l的距離等于2,求m的值. (3)選修4-5:不等式選講 已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為4. (i)求a+b+c的值; (ii)求a2+b2+c2的最小值. 21.解:(1)(i)因為|A|=2×3-1×4=2, 所以A-1=)) =)). (ii)由AC=B得(A-1A)C=A-1B,故 C=A-1B =)))) =,),-3))). (2)(i)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)

11、2=9. 由ρsin=m,得 ρsin θ-ρcos θ-m=0. 所以直線l的直角坐標方程為x-y+m=0. (ii)依題意,圓心C到直線l的距離等于2, 即=2,解得m=-3±2. (3)(i)因為f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c, 當且僅當-a≤x≤b時,等號成立, 又a>0,b>0,所以|a+b|=a+b, 所以f(x)的最小值為a+b+c. 又已知f(x)的最小值為4, 所以a+b+c=4. (ii)由(i)知a+b+c=4,由柯西不等式得 (4+9+1)≥=(a+b+c)2=16, 即a2+b2+c2≥

12、, 當且僅當==,即a=,b=,c=時等號成立. 故a2+b2+c2的最小值為. N3 選修4-4 參數(shù)與參數(shù)方程 12.N3[2015·安徽卷] 在極坐標系中,圓ρ=8sin θ上的點到直線θ=(ρ∈R)距離的最大值是________. 12.6 [解析] 依題意得圓的直角坐標方程為x2+y2-8y=0,即x2+(y-4)2=16,直線的直角坐標方程為x-y=0,故圓心到直線的距離d==2,因此圓上的點到直線的最大距離為d+r=6. 14.N3[2015·廣東卷] (坐標系與參數(shù)方程選做題)已知直線l的極坐標方程為2ρsin=,點A的極坐標為A,則點A到直線l的距離為

13、________. 14. [解析] 直線l的極坐標方程2ρsin=化為直角坐標方程為x-y+1=0,A在直角坐標系中的坐標為,即A(2,-2),故點A到直線的距離為=. 16.N3[2015·湖北卷] (選修4-4:坐標系與參數(shù)方程) 在直角坐標系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標系.已知直線l的極坐標方程為ρ(sin θ-3cos θ)=0,曲線C的參數(shù)方程為(t為參數(shù)),l與C相交于A,B兩點,則|AB|=________. 16.2 [解析] 將直線l的極坐標方程ρ(sin θ-3cos θ)=0化為直角坐標方程為3x-y=0,將曲線C的參數(shù)方程(t為參數(shù))化為

14、普通方程為y2-x2=4.聯(lián)立 解得或 不妨設點A,B,所以==2. 21.N1[2015·江蘇卷] A.[選修4-1:幾何證明選講]如圖1-5,在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AE交BC于點D. 求證:△ABD∽△AEB. 圖1-5 N2B.[選修4-2:矩陣與變換]已知x,y∈R,向量α=是矩陣A=的屬于特征值-2的一個特征向量,求矩陣A以及它的另一個特征值. N3C.[選修4-4:坐標系與參數(shù)方程]已知圓C的極坐標方程為ρ2+2ρsin-4=0,求圓C的半徑. N4D.[選修4-5:不等式選講]解不等式x+|2x+3|≥2. 21.A.證明:因為A

15、B=AC,所以∠ABD=∠C. 又因為∠C=∠E,所以∠ABD=∠E, 又∠BAE為公共角,所以△ABD∽△AEB. B.解:由已知,得Aα=-2α,即==,則即所以矩陣A=. 從而矩陣A的特征多項式f(λ)=(λ+2)(λ-1), 所以矩陣A的另一個特征值為1. C.解:以極坐標系的極點為平面直角坐標系的原點O,以極軸為x軸的正半軸,建立直角坐標系xOy. 圓C的極坐標方程為ρ2+2ρ-4=0,化簡得ρ2+2ρsin θ-2ρcos θ-4=0, 則圓C的直角坐標方程為x2+y2-2x+2y-4=0, 即(x-1)2+(y+1)2=6, 所以圓C的半徑為. D.解:原不

16、等式可化為或 解得x≤-5或x≥-. 綜上,原不等式的解集是. 23.N3[2015·全國卷Ⅱ] 選修4-4:坐標系與參數(shù)方程 在直角坐標系xOy中,曲線C1:(t為參數(shù),t≠0),其中0≤α<π.在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sin θ,C3:ρ=2cos θ. (1)求C2與C3交點的直角坐標; (2)若C1與C2相交于點A,C1與C3相交于點B,求|AB|的最大值. 23.解:(1)曲線C2的直角坐標方程為x2+y2-2y=0,曲線C3的直角坐標方程為x2+y2-2x=0. 聯(lián)立解得或 所以C2與C3交點的直角坐標為(0,0)和. (2)

17、曲線C1的極坐標方程為θ=α(ρ∈R,ρ≠0),其中0≤α<π. 因此A的極坐標為(2sin α,α), B的極坐標為(2cos α,α), 所以|AB|=|2sin α-2cos α|=4sin. 故當α=時,|AB|取得最大值,最大值為4. 23.N3[2015·全國卷Ⅰ] 選修4-4:坐標系與參數(shù)方程 在直角坐標系xOy中,直線C1:x=-2,圓C2:(x-1)2+(y-2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系. (1)求C1,C2的極坐標方程; (2)若直線C3的極坐標方程為θ=(ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積. 23.解

18、:(1)因為x=ρcos θ,y=ρsin θ,所以C1的極坐標方程為ρcos θ=-2,C2的極坐標方程為ρ2-2ρcos θ-4ρsin θ+4=0. (2)將θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=. 又C2的半徑為1,所以△C2MN的面積為. 11.N3[2015·北京卷] 在極坐標系中,點到直線ρ(cos θ+sin θ)=6的距離為________. 11.1 [解析] 利用公式把極坐標轉(zhuǎn)化為平面直角坐標(1,),把直線方程ρ(cos θ+sin θ)=6轉(zhuǎn)化為x+y-6=0.利用點到直線

19、的距離公式可知,d==1. 21.N2、N3、N4[2015·福建卷] (1)選修4-2:矩陣與變換 已知矩陣A=),B=)). (i)求A的逆矩陣A-1; (ii)求矩陣C,使得AC=B. (2)選修4-4:坐標系與參數(shù)方程 在平面直角坐標系xOy中,圓C的參數(shù)方程為(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為ρsin=m(m∈R). (i)求圓C的普通方程及直線l的直角坐標方程; (ii)設圓心C到直線l的距離等于2,求m的值. (3)選修4-5:不等式選講 已知a>0,b>0,c>0,函數(shù)

20、f(x)=|x+a|+|x-b|+c的最小值為4. (i)求a+b+c的值; (ii)求a2+b2+c2的最小值. 21.解:(1)(i)因為|A|=2×3-1×4=2, 所以A-1=)) =)). (ii)由AC=B得(A-1A)C=A-1B,故 C=A-1B =)))) =,),-3))). (2)(i)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)2=9. 由ρsin=m,得 ρsin θ-ρcos θ-m=0. 所以直線l的直角坐標方程為x-y+m=0. (ii)依題意,圓心C到直線l的距離等于2, 即=2,解得m=-3±2. (3)(i)因為

21、f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c, 當且僅當-a≤x≤b時,等號成立, 又a>0,b>0,所以|a+b|=a+b, 所以f(x)的最小值為a+b+c. 又已知f(x)的最小值為4, 所以a+b+c=4. (ii)由(i)知a+b+c=4,由柯西不等式得 (4+9+1)≥=(a+b+c)2=16, 即a2+b2+c2≥, 當且僅當==,即a=,b=,c=時等號成立. 故a2+b2+c2的最小值為. N4 選修4-5 不等式選講 5.A2、N4、D3[2015·湖北卷] 設a1,a2,…,an∈R,n≥3.若p:a

22、1,a2,…,an成等比數(shù)列;q:(a+a+…+a)(a+a+…+a)=(a1a2+a2a3+…+an-1an)2,則(  ) A.p是q的充分條件,但不是q的必要條件 B.p是q的必要條件,但不是q的充分條件 C.p是q的充分必要條件 D.p既不是q的充分條件,也不是q的必要條件 5.A [解析] 當p成立,即a1,a2,…,an成等比數(shù)列時,==…=,滿足柯西不等式(a+a+…+a)(a+a+…+a)≥(a1a2+a2a3+…+an-1an)2等號成立的條件,故(a+a+…+a)(a+a+…+a)=(a1a2+a2a3+…+ an-1an)2,即q成立;但當q成立時,不一定非要a

23、1,a2,…,an成等比數(shù)列,如:當a1=1,a2=a3=…=an=0時,q成立,但不滿足a1,a2,…,an成等比數(shù)列.所以p是q的充分條件,但不是q的必要條件.故選A. 21.N1[2015·江蘇卷] A.[選修4-1:幾何證明選講]如圖1-5,在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AE交BC于點D. 求證:△ABD∽△AEB. 圖1-5 N2B.[選修4-2:矩陣與變換]已知x,y∈R,向量α=是矩陣A=的屬于特征值-2的一個特征向量,求矩陣A以及它的另一個特征值. N3C.[選修4-4:坐標系與參數(shù)方程]已知圓C的極坐標方程為ρ2+2ρsin-4=0,求圓C的

24、半徑. N4D.[選修4-5:不等式選講]解不等式x+|2x+3|≥2. 21.A.證明:因為AB=AC,所以∠ABD=∠C. 又因為∠C=∠E,所以∠ABD=∠E, 又∠BAE為公共角,所以△ABD∽△AEB. B.解:由已知,得Aα=-2α,即==,則即所以矩陣A=. 從而矩陣A的特征多項式f(λ)=(λ+2)(λ-1), 所以矩陣A的另一個特征值為1. C.解:以極坐標系的極點為平面直角坐標系的原點O,以極軸為x軸的正半軸,建立直角坐標系xOy. 圓C的極坐標方程為ρ2+2ρ-4=0,化簡得ρ2+2ρsin θ-2ρcos θ-4=0, 則圓C的直角坐標方程為x2+y

25、2-2x+2y-4=0, 即(x-1)2+(y+1)2=6, 所以圓C的半徑為. D.解:原不等式可化為或 解得x≤-5或x≥-. 綜上,原不等式的解集是. 24.N4[2015·全國卷Ⅱ] 選修4-5:不等式選講 設a,b,c,d均為正數(shù),且a+b=c+d,證明: (1)若ab>cd,則+>+; (2)+>+是|a-b|<|c-d|的充要條件. 24.證明:(1)(+)2=a+b+2, (+)2=c+d+2, 由題設a+b=c+d,ab>cd, 得(+)2>(+)2, 因此+>+. (2)(i)若|a-b|<|c-d|,則(a-b)2<(c-d)2,即 (a+

26、b)2-4ab<(c+d)2-4cd. 因為a+b=c+d,所以ab>cd. 由(1)得+>+. (ii)若+>+, 則(+)2>(+)2, 即a+b+2>c+d+2. 因為a+b=c+d,所以ab>cd.于是 (a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2, 因此|a-b|<|c-d|. 綜上,+>+是|a-b|<|c-d|的充要條件. 24.N4[2015·全國卷Ⅰ] 選修4-5:不等式選講 已知函數(shù)f(x)=|x+1|-2|x-a|,a>0. (1)當a=1時,求不等式f(x)>1的解集; (2)若f(x)的圖像與x軸圍成的三角形面積大于

27、6,求a的取值范圍. 24.解:(1)當a=1時,f(x)>1化為|x+1|-2|x-1|-1>0. 當x≤-1時,不等式化為x-4>0,無解; 當-10,解得0,解得1≤x<2. 所以f(x)>1的解集為. (2)由題設可得,f(x)= 所以函數(shù)f(x)的圖像與x軸圍成的三角形的三個頂點分別為A,B(2a+1,0),C(a,a+1),△ABC的面積為(a+1)2. 由題設得(a+1)2>6,故a>2. 所以a的取值范圍為(2,+∞). 21.N2、N3、N4[2015·福建卷] (1)選修4-2:

28、矩陣與變換 已知矩陣A=),B=)). (i)求A的逆矩陣A-1; (ii)求矩陣C,使得AC=B. (2)選修4-4:坐標系與參數(shù)方程 在平面直角坐標系xOy中,圓C的參數(shù)方程為(t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程為ρsin=m(m∈R). (i)求圓C的普通方程及直線l的直角坐標方程; (ii)設圓心C到直線l的距離等于2,求m的值. (3)選修4-5:不等式選講 已知a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為4. (i)求a+b+c的值; (ii)求

29、a2+b2+c2的最小值. 21.解:(1)(i)因為|A|=2×3-1×4=2, 所以A-1=)) =)). (ii)由AC=B得(A-1A)C=A-1B,故 C=A-1B =)))) =,),-3))). (2)(i)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)2=9. 由ρsin=m,得 ρsin θ-ρcos θ-m=0. 所以直線l的直角坐標方程為x-y+m=0. (ii)依題意,圓心C到直線l的距離等于2, 即=2,解得m=-3±2. (3)(i)因為f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c, 當且僅當-a≤x≤b時,等號成立, 又a>0,b>0,所以|a+b|=a+b, 所以f(x)的最小值為a+b+c. 又已知f(x)的最小值為4, 所以a+b+c=4. (ii)由(i)知a+b+c=4,由柯西不等式得 (4+9+1)≥=(a+b+c)2=16, 即a2+b2+c2≥, 當且僅當==,即a=,b=,c=時等號成立. 故a2+b2+c2的最小值為. N5 優(yōu)選法與試驗設計

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!