高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率

上傳人:努力****83 文檔編號:68991842 上傳時間:2022-04-05 格式:DOC 頁數(shù):17 大?。?23KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率_第1頁
第1頁 / 共17頁
高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率_第2頁
第2頁 / 共17頁
高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí) 17-18版 第10章 第54課 隨機事件的概率(17頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第54課 隨機事件的概率 [最新考綱] 內(nèi)容 要求 A B C 隨機事件與概率 √ 互斥事件及其發(fā)生的概率 √ 1.概率和頻率 (1)在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率. (2)對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)隨著試驗次數(shù)的增加穩(wěn)定于概率P(A),因此可以用頻率fn(A)來估計概率P(A). 2.事件的關(guān)系與運算 定義 符號表示 包含關(guān)系 若事件A發(fā)生,則事件B一定發(fā)生,這時稱事件B包含

2、事件A(或稱事件A包含于事件B) B?A(或A?B) 相等關(guān)系 若B?A,且A?B,那么稱事件A與事件B相等 A=B并事件 (和事件) 若某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生或事件B發(fā)生,則稱此事件為事件A與事件B的并事件(或和事件) A∪B(或A+B) 交事件 (積事件) 若某事件發(fā)生當(dāng)且僅當(dāng)事件A發(fā)生且事件B發(fā)生,則稱此事件為事件A與事件B的交事件(或積事件) A∩B(或AB) 互斥事件 若A∩B為不可能事件,那么稱事件A與事件B互斥 A∩B=? 對立事件 若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件 A∩B=? 且A∪B=Ω 3.

3、概率的幾個基本性質(zhì) (1)概率的取值范圍:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式. ①如果事件A與事件B互斥,則P(A+B)=P(A)+P(B); ②若事件B與事件A互為對立事件,則P(A)=1-P(B). 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)事件發(fā)生的頻率與概率是相同的.(  ) (2)在大量的重復(fù)實驗中,概率是頻率的穩(wěn)定值.(  ) (3)對立事件一定是互斥事件,互斥事件不一定是對立事件.(  ) (4)6張獎券中只有一張有獎,甲、乙先后各

4、抽取一張,則甲中獎的概率小于乙中獎的概率. [答案] (1)× (2)√ (3)√ (4)× 2.(教材改編)袋中裝有3個白球,4個黑球,從中任取3個球,則①恰有1個白球和全是白球;②至少有1個白球和全是黑球;③至少有1個白球和至少有2個白球;④至少有1個白球和至少有1個黑球. 在上述事件中,是對立事件的為________. ② [至少有1個白球和全是黑球不同時發(fā)生,且一定有一個發(fā)生,∴②中兩事件是對立事件.] 3.(2016·天津高考改編)甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿開_______.  [事件“甲不輸”包含“和棋”和“甲獲勝”這兩個互斥

5、事件,所以甲不輸?shù)母怕蕿椋?] 4.集合A={2,3},B={1,2,3},從A,B中各任意取一個數(shù),則這兩數(shù)之和等于4的概率是________.  [從A,B中各取一個數(shù)有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6種情況, 其中和為4的有兩種情況(2,2),(3,1), 故所求事件的概率P==.] 5.(2017·威海模擬)圍棋盒子中有多粒黑子和白子,已知從中取出2粒都是黑子的概率為,都是白子的概率是,則從中任意取出2粒恰好是同一色的概率是________.  [由題意知,所求概率P=+=.] 隨機事件間的關(guān)系  從1,2,3,4,5

6、這五個數(shù)中任取兩個數(shù),其中:①恰有一個是偶數(shù)和恰有一個是奇數(shù);②至少有一個是奇數(shù)和兩個都是奇數(shù);③至少有一個是奇數(shù)和兩個都是偶數(shù);④至少有一個是奇數(shù)和至少有一個是偶數(shù).上述事件中,是對立事件的是________.(填序號) ③ [從1,2,3,4,5這五個數(shù)中任取兩個數(shù)有3種情況:一奇一偶,兩個奇數(shù),兩個偶數(shù), 其中“至少有一個是奇數(shù)”包含一奇一偶或兩個奇數(shù)這兩種情況,它與兩個都是偶數(shù)是對立事件. 又①②④中的事件可以同時發(fā)生,不是對立事件.] [規(guī)律方法] 1.本題中準確理解恰有兩個奇數(shù)(偶數(shù)),一奇一偶,至少有一個奇數(shù)(偶數(shù))是求解的關(guān)鍵,必要時可把所有試驗結(jié)果寫出來,看所求事件包

7、含哪些試驗結(jié)果,從而斷定所給事件的關(guān)系. 2.準確把握互斥事件與對立事件的概念. (1)互斥事件是不可能同時發(fā)生的事件,但可以同時不發(fā)生. (2)對立事件是特殊的互斥事件,特殊在對立的兩個事件有且僅有一個發(fā)生. [變式訓(xùn)練1] 口袋里裝有1紅,2白,3黃共6個形狀相同的小球,從中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1個黃球”,C=“取出的2球至少有1個白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1個白球”.下列判斷中正確的序號為________. 【導(dǎo)學(xué)號:62172298】 ①A與D為對立事件;②B與C是互斥事件;③C與E是對立事件;④P

8、(C+E)=1;⑤P(B)=P(C). ①④ [當(dāng)取出的2個球中一黃一白時,B與C都發(fā)生,②不正確.當(dāng)取出的2個球中恰有一個白球時,事件C與E都發(fā)生,則③不正確.顯然A與D是對立事件,①正確;C+E為必然事件,④正確.由于P(B)=,P(C)=,所以⑤不正確.] 隨機事件的頻率與概率  (2016·全國卷Ⅱ)某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下: 上年度出險次數(shù) 0 1 2 3 4 ≥5 ?!≠M 0.85a a 1.25a 1.5a 1.75a 2a 隨機調(diào)查了該險種的200名

9、續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表: 出險次數(shù) 0 1 2 3 4 ≥5 頻數(shù) 60 50 30 30 20 10 (1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值; (2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值; (3)求續(xù)保人本年度平均保費的估計值. [解] (1)事件A發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險次數(shù)小于2.由所給數(shù)據(jù)知,一年內(nèi)出險次數(shù)小于2的頻率為=0.55,故P(A)的估計值為0.55. (2)事件B發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險次數(shù)大于1且小于4.由所給數(shù)據(jù)知,一年內(nèi)出

10、險次數(shù)大于1且小于4的頻率為=0.3,故P(B)的估計值為0.3. (3)由所給數(shù)據(jù)得 保費 0.85a a 1.25a 1.5a 1.75a 2a 頻率 0.30 0.25 0.15 0.15 0.10 0.05 調(diào)查的200名續(xù)保人的平均保費為0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,續(xù)保人本年度平均保費的估計值為1.192 5a. [規(guī)律方法] 1.解題的關(guān)鍵是根據(jù)統(tǒng)計圖表分析滿足條件的事件發(fā)生的頻數(shù),計算頻率,用頻率估計概率. 2.頻率反映了一個隨機

11、事件出現(xiàn)的頻繁程度,頻率是隨機的,而概率是一個確定的值,通常用概率來反映隨機事件發(fā)生的可能性的大小,通過大量的重復(fù)試驗,事件發(fā)生的頻率會逐漸趨近于某一個常數(shù)(概率),因此有時也用頻率來作為隨機事件概率的估計值. [變式訓(xùn)練2] (2017·西安質(zhì)檢)隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天氣 晴 雨 陰 陰 陰 雨 陰 晴 晴 晴 陰 晴 晴 晴 晴 日期 16 17 18 19 20 21 22 23

12、 24 25 26 27 28 29 30 天氣 晴 陰 雨 陰 陰 晴 陰 晴 晴 晴 陰 晴 晴 晴 雨 (1)在4月份任選一天,估計西安市在該天不下雨的概率; (2)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率. [解] (1)由4月份天氣統(tǒng)計表知,在容量為30的樣本中,不下雨的天數(shù)是26, 以頻率估計概率,在4月份任選一天,西安市不下雨的概率為=. (2)稱相鄰的兩個日期為“互鄰日期對”(如,1日與2日,2日與3日等).這樣,在4月份中,前一天為晴天的互鄰日期對有16個,其中后一天不下雨的有1

13、4個,所以晴天的次日不下雨的頻率f==. 以頻率估計概率,運動會期間不下雨的概率為. 互斥事件與對立事件的概率  某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示. 一次購物量 1至4件 5至8件 9至12件 13至16件 17件及 以上 顧客數(shù)(人) x 30 25 y 10 結(jié)算時間 (分鐘/人) 1 1.5 2 2.5 3 已知這100位顧客中一次購物量超過8件的顧客占55%. (1)確定x,y的值,并估計顧客一次購物的結(jié)算時間的平均值; (2)求一位顧客一次購物的結(jié)算

14、時間不超過2分鐘的概率.(將頻率視為概率). 【導(dǎo)學(xué)號:62172299】 [解] (1)由題意,得 解得 該超市所有顧客一次性購物的結(jié)算時間組成一個總體,100位顧客一次購物的結(jié)算時間視為總體的一個容量為100的簡單隨機抽樣,顧客一次購物的結(jié)算時間的平均值可用樣本平均數(shù)估計. 又==1.9, ∴估計顧客一次購物的結(jié)算時間的平均值為1.9分鐘. (2)設(shè)B,C分別表示事件“一位顧客一次購物的結(jié)算時間分別為2.5分鐘、3分鐘”.設(shè)A表示事件“一位顧客一次購物的結(jié)算時間不超過2分鐘的概率.” 將頻率視為概率,得P(B)==, P(C)==. ∵B,C互斥,且=B+C, ∴P

15、()=P(B+C)=P(B)+P(C)=+=, 因此P(A)=1-P()=1-=, ∴一位顧客一次購物結(jié)算時間不超過2分鐘的概率為0.7. [規(guī)律方法] 1.(1)求解本題的關(guān)鍵是正確判斷各事件的關(guān)系,以及把所求事件用已知概率的事件表示出來. (2)結(jié)算時間不超過2分鐘的事件,包括結(jié)算時間為2分鐘的情形,否則會計算錯誤. 2.求復(fù)雜的互斥事件的概率一般有兩種方法:一是直接求解法,將所求事件的概率分解為一些彼此互斥的事件的概率再求和;二是間接法,先求該事件的對立事件的概率,再由P(A)=1-P()求解.當(dāng)題目涉及“至多”“至少”型問題,多考慮間接法. [變式訓(xùn)練3] 某商場有獎銷

16、售中,購滿100元商品得1張獎券,多購多得.1 000張獎券為一個開獎單位,設(shè)特等獎1個,一等獎10個,二等獎50個.設(shè)1張獎券中特等獎、一等獎、二等獎的事件分別為A,B,C,求: (1)P(A),P(B),P(C); (2)1張獎券的中獎概率; (3)1張獎券不中特等獎且不中一等獎的概率. [解] (1)P(A)=, P(B)==, P(C)==. 故事件A,B,C的概率分別為,,. (2)1張獎券中獎包含中特等獎、一等獎、二等獎.設(shè)“1張獎券中獎”這個事件為M,則M=A+B+C. ∵A,B,C兩兩互斥, ∴P(M)=P(A+B+C)=P(A)+P(B)+P(C) ==

17、, 故1張獎券的中獎概率約為. (3)設(shè)“1張獎券不中特等獎且不中一等獎”為事件N,則事件N與“1張獎券中特等獎或中一等獎”為對立事件, ∴P(N)=1-P(A+B)=1-=, 故1張獎券不中特等獎且不中一等獎的概率為. [思想與方法] 1.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)隨著試驗次數(shù)的增加穩(wěn)定于概率P(A),因此可以用頻率fn(A)來估計概率P(A). 2.對立事件不僅兩個事件不能同時發(fā)生,而且二者必有一個發(fā)生. 3.求復(fù)雜的互斥事件的概率一般有兩種方法: (1)直接法:將所求事件的概率分解為一些彼此互斥的事件的概率的和,運用互斥事件的求和公式計算.

18、 (2)間接法:先求此事件的對立事件的概率,再用公式P(A)=1-P(),即運用逆向思維(正難則反). [易錯與防范] 1.易將概率與頻率混淆,頻率隨著試驗次數(shù)變化而變化,而概率是一個常數(shù). 2.正確認識互斥事件與對立事件的關(guān)系:對立事件是特殊的互斥事件,但互斥事件不一定是對立事件,“互斥”是“對立”的必要不充分條件. 3.需準確理解題意,特別留心“至多……”“至少……”“不少于……”等語句的含義. 課時分層訓(xùn)練(五十四) A組 基礎(chǔ)達標 (建議用時:30分鐘) 一、填空題 1.有一個游戲,其規(guī)則是甲、乙、丙、丁四個人從同一地點隨機地向東、南、西、北四個方向前進,每人一個方

19、向.事件“甲向南”與事件“乙向南”是________事件. 互斥 [由于每人一個方向,故“甲向南”意味著“乙向南”是不可能的,故是互斥事件.] 2.從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,則事件“抽到的產(chǎn)品不是一等品”的概率為________. 0.35 [∵事件A={抽到一等品},且P(A)=0.65, ∴事件“抽到的產(chǎn)品不是一等品”的概率為P=1-P(A)=1-0.65=0.35.] 3.給出下列三個命題,其中正確命題有________個. ①有一大批產(chǎn)品

20、,已知次品率為10%,從中任取100件,必有10件是次品;②做7次拋硬幣的試驗,結(jié)果3次出現(xiàn)正面,因此正面出現(xiàn)的概率是;③隨機事件發(fā)生的頻率就是這個隨機事件發(fā)生的概率. 0 [①錯,不一定是10件次品;②錯,是頻率而非概率;③錯,頻率不等于概率,這是兩個不同的概念.] 4.已知某運動員每次投籃命中的概率都為40%,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果. 經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù): 907 966 191 925

21、 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為________. 【導(dǎo)學(xué)號:62172300】  [20組隨機數(shù)中,恰有兩次命中的有5組,因此該運動員三次投籃恰有兩次命中的概率為P==.] 5.(2017·云南昆明3月月考)中國乒乓球隊中的甲、乙兩名隊員參加奧運會乒乓球女子單打比賽,甲奪得冠軍的概率為,乙奪得冠軍的概率為,那么中國隊奪得女子乒乓球單打冠軍的概率為________.  [由于事件“中國隊奪得女子乒乓球單打冠軍”包括事件“甲奪得冠軍”和“

22、乙奪得冠軍”,但這兩個事件不可能同時發(fā)生,即彼此互斥,所以可按互斥事件概率的加法公式進行計算,即中國隊奪得女子乒乓球單打冠軍的概率為+=.] 6.某袋中有編號為1,2,3,4,5,6的6個球(小球除編號外完全相同),甲先從袋中摸出一個球,記下編號后放回,乙再從袋中摸出一個球,記下編號,則甲、乙兩人所摸出球的編號不同的概率是________.  [設(shè)a,b分別為甲、乙摸出球的編號.由題意,摸球試驗共有n=6×6=36種不同結(jié)果,滿足a=b的基本事件共有6種, 所以摸出編號不同的概率P=1-=.] 7.如圖54-1所示的莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則

23、甲的平均成績超過乙的平均成績的概率是________. 【導(dǎo)學(xué)號:62172301】 圖54-1  [設(shè)被污損的數(shù)字為x,則 甲=(88+89+90+91+92)=90, 乙=(83+83+87+99+90+x), 若甲=乙,則x=8. 若甲>乙,則x可以為0,1,2,3,4,5,6,7, 故P==.] 8.拋擲一枚均勻的正方體骰子(各面分別標有數(shù)字1,2,3,4,5,6),事件A表示“朝上一面的數(shù)是奇數(shù)”,事件B表示“朝上一面的數(shù)不超過2”,則P(A+B)=________.  [將事件A+B分為:事件C“朝上一面的數(shù)為1,2”與事件D“朝上一面的數(shù)為3,5”.

24、則C,D互斥, 且P(C)=,P(D)=, ∴P(A+B)=P(C+D)=P(C)+P(D)=.] 9.在一次隨機試驗中,彼此互斥的事件A,B,C,D的概率分別是0.2,0.2,0.3,0.3,則下列說法正確的是________. ①A+B與C是互斥事件,也是對立事件; ②B+C與D是互斥事件,也是對立事件; ③A+C與B+D是互斥事件,但不是對立事件; ④A與B+C+D是互斥事件,也是對立事件. ④ [由于A,B,C,D彼此互斥,且A+B+C+D是一個必然事件,故其事件的關(guān)系可由如圖所示的Venn圖表示,由圖可知,任何一個事件與其余3個事件的和事件必然是對立事件,任何兩個事件

25、的和事件與其余兩個事件的和事件也是對立事件,④正確.] 10.若隨機事件A,B互斥,A,B發(fā)生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,則實數(shù)a的取值范圍是________.  [由題意可知 解得

26、85 √ × × × 98 × √ × × (1)估計顧客同時購買乙和丙的概率; (2)估計顧客在甲、乙、丙、丁中同時購買3種商品的概率. [解] (1)從統(tǒng)計表可以看出,在這1 000位顧客中有200位顧客同時購買了乙和丙,所以顧客同時購買乙和丙的頻率為=0.2. (2)從統(tǒng)計表可以看出,在這1 000位顧客中,有100位顧客同時購買了甲、丙、丁,另有200位顧客同時購買了甲、乙、丙,其他顧客最多購買了2種商品,所以顧客在甲、乙、丙、丁中同時購買3種商品的概率可以估計為=0.3. 12.某班選派5人,參加學(xué)校舉行的數(shù)學(xué)競賽,獲獎的人數(shù)及其概率如下: 獲獎人數(shù)

27、0 1 2 3 4 5 概率 0.1 0.16 x y 0.2 z (1)若獲獎人數(shù)不超過2人的概率為0.56,求x的值; (2)若獲獎人數(shù)最多4人的概率為0.96,最少3人的概率為0.44,求y,z的值. 【導(dǎo)學(xué)號:62172302】 [解] 記事件“在競賽中,有k人獲獎”為Ak(k∈N,k≤5),則事件Ak彼此互斥. (1)∵獲獎人數(shù)不超過2人的概率為0.56, ∴P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56, 解得x=0.3. (2)由獲獎人數(shù)最多4人的概率為0.96,得 P(A5)=1-0.96=0.04,即z=0.04.

28、 由獲獎人數(shù)最少3人的概率為0.44,得P(A3)+P(A4)+P(A5)=0.44, 即y+0.2+0.04=0.44, 解得y=0.2. B組 能力提升 (建議用時:15分鐘) 1.?dāng)S一個骰子的試驗,事件A表示“出現(xiàn)小于5的偶數(shù)點”,事件B表示“出現(xiàn)小于5的點數(shù)”,若表示B的對立事件,則一次試驗中,事件A+發(fā)生的概率為________.  [擲一個骰子的試驗有6種可能結(jié)果. 依題意P(A)==,P(B)==, ∴P()=1-P(B)=1-=. ∵表示“出現(xiàn)5點或6點”的事件, 因此事件A與互斥, 從而P(A+)=P(A)+P()=+=.] 2.某城市2017年的空氣

29、質(zhì)量狀況如表所示: 污染指數(shù)T 30 60 100 110 130 140 概率P 其中污染指數(shù)T≤50時,空氣質(zhì)量為優(yōu);50

30、0 120 (1)若每輛車的投保金額均為2 800元,估計賠付金額大于投保金額的概率; (2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4 000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4 000元的概率. [解] (1)設(shè)A表示事件“賠付金額為3 000元”,B表示事件“賠付金額為4 000元”,以頻率估計概率得P(A)==0.15,P(B)==0.12. 由表格知,賠付金額大于投保金額即事件A+B發(fā)生, 且A,B互斥, 所以P(A+B)=P(A)+P(B)=0.15+0.12=0.27, 故賠付金額大于投保金額的概率為0.27.

31、 (2)設(shè)C表示事件“投保車輛中新司機獲賠4 000元”,由已知,樣本車輛中車主為新司機的有0.1×1 000=100(輛),而賠付金額為4 000元的車輛中,車主為新司機的有0.2×120=24(輛), 所以樣本車輛中新司機車主獲賠金額為4 000元的頻率為=0.24, 因此,由頻率估計概率得P(C)=0.24. 4.不透明袋中有3個白球,3個黑球,從中任意摸出3個球,求下列事件發(fā)生的概率: (1)摸出1個或2個白球; (2)至少摸出1個白球. [解] 將白球分別編號為1,2,3,黑球分別編號為4,5,6,則從6個球中任意摸出3個球,結(jié)果如下: 三白為(1,2,3); 兩白一

32、黑為(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),(1,3,6),(2,3,4),(2,3,5),(2,3,6);一白兩黑為(1,4,5),(1,4,6),(1,5,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),(3,4,6),(3,5,6);三黑為(4,5,6). 共有20種不同的結(jié)果. 從6個球中任取3個,記“恰有1個白球”為事件A1,“恰有2個白球”為事件A2,“恰有3個黑球”為事件B,事件A1與A2為互斥事件,則 (1)摸出1個或2個白球的概率P1=P(A1+A2)=P(A1)+P(A2)=+=. (2)“至少摸出一個白球”的對立事件為“摸出的3個球都是黑球”,所以所求概率P2=1-P(B)=1-=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!