2、(2)因為|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
當且僅當(x+1)(x-2)≤0,即-1≤x≤2時取到等號.
所以f(x)的最小值為3.
2.(2013·江蘇高考)已知a≥b>0,求證:2a3-b3≥2ab2-a2b.
證明:2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).
因為a≥b>0,所以a-b≥0,a+b>0,2a+b>0,
從而(a-b)(a+b)(2a+b)≥0,
即2a3-b3≥2ab2-a2b.
3.(2012·福建高考)已知函數(shù)f(x)=m-|x-2|,
3、m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且++=m,求證:a+2b+3c≥9.
解:(1)因為f(x+2)=m-|x|,所以f(x+2)≥0等價于|x|≤m,
由|x|≤m有解,得m≥0,且其解集為{x|-m≤x≤m}.
又因為f(x+2)≥0的解集為[-1,1],故m=1.
(2)證明:由(1)知++=1,又a,b,c∈R+,
由柯西不等式得
a+2b+3c=(a+2b+3c)≥+2=9.
1.絕對值不等式
定理1:如果a,b是實數(shù),則|a+b|≤|a|+|b|,當且僅當ab≥0時,等號成立.
定理2:如果a,b
4、,c是實數(shù),那么|a-c|≤|a-b|+|b-c|,當且僅當(a-b)(b-c)≥0時,等號成立.
2.|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法
(1)|ax+b|≤c(c>0)?-c≤ax+b≤c.
(2)|ax+b|≥c(c>0)?ax+b≥c或ax+b≤-c.
3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法
(1)利用絕對值不等式幾何意義求解,體現(xiàn)數(shù)形結(jié)合思想.
(2)利用“零點分段法”求解,體現(xiàn)分類討論思想.
(3)通過構(gòu)建函數(shù),利用函數(shù)圖像求解,體現(xiàn)函數(shù)與方程思想.
4.證明不等式的基本方法
5、(1)比較法;(2)綜合法;(3)分析法;(4)反證法;(5)放縮法.
5.二維形式的柯西不等式
若a,b,c,d∈R,則(a2+b2)(c2+d2)≥(ac+bd)2,當且僅當ad=bc時等號成立.
熱點一
絕對值不等式的求解
[例1] (2013·遼寧高考)已知函數(shù)f(x)=|x-a|,其中a>1.
(1)當a=2時,求不等式f(x)≥4-|x-4|的解集;
(2)已知關于x的不等式|f(2x+a)-2f(x)|≤2的解集為{x|1≤x≤2},求a的值.
[自主解答] (1)當a=2時,f(x)+|x-4|=
當x≤2時,由f(x)≥4-|x-4|得-2x+6≥4
6、,
解得x≤1;
當20,則|ax+b|≤c?-c≤ax+b
7、≤c,|ax+b|≥c?ax+b≥c或ax+b≤-c,然后根據(jù)a,b的取值求解即可;
(2)若c<0,則|ax+b|≤c的解集為?,|ax+b|≥c的解集為R.
2.|x-a|+|x-b|≥c,|x-a|+|x-b|≤c型不等式的解法
(1)令每個絕對值符號里的一次式為0,求出相應的根;
(2)把這些根由小到大排序,它們把數(shù)軸分為若干個區(qū)間;
(3)在所分區(qū)間上,根據(jù)絕對值的定義去掉絕對值符號,討論所得的不等式在這個區(qū)間上的解集;
(4)這些解集的并集就是原不等式的解集.
1.已知函數(shù)f(x)=|x-2|-|x-5|.
(1)證明:-3≤f(x)≤3;
(2)求不等式f(
8、x)≥x2-8x+15的解集.
解:(1)證明:當x≤2時,f(x)=2-x-(5-x)=-3;
當2
9、)≥x2-8x+15?x2-8x+12≤0?2≤x≤6,
所以f(x)≥x2-8x+15的解集為{x|5≤x≤6}.
綜上,不等式f(x)≥x2-8x+15的解集為{x|5-≤x≤6}.
熱點二
與絕對值不等式有關的參數(shù)范圍問題
[例2] (2013·新課標全國卷Ⅰ)已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當a=-2時,求不等式f(x)<g(x)的解集;
(2)設a>-1,且當x∈時,f(x)≤g(x),求a的取值范圍.
[自主解答] (1)
當a=-2時,不等式f(x)<g(x)化為|2x-1|+|2x-2|-x-3<0.
設函數(shù)
10、y=|2x-1|+|2x-2|-x-3,則
y=其圖像如圖所示.
從圖像可知,當且僅當x∈(0,2)時,y<0,所以原不等式的解集是{x|0<x<2}.
(2)當x∈時,f(x)=1+a.
不等式f(x)≤g(x)化為1+a≤x+3.
所以x≥a-2對x∈都成立.
故-≥a-2,即a≤.
從而a的取值范圍是.
——————————規(guī)律·總結(jié)——————————————————————
1.解決含參數(shù)的絕對值不等式問題,常用以下兩種方法:
(1)將參數(shù)分類討論,將其轉(zhuǎn)化為分段函數(shù)解決;
(2)借助于絕對值的幾何意義,先求出f(x)的最值或值域,然后再根據(jù)題目要求,求解參
11、數(shù)的取值范圍.
2.解答此類問題應熟記以下轉(zhuǎn)化:f(x)>a恒成立?f(x)min>a;f(x)a有解?f(x)max>a;f(x)a無解?f(x)max≤a;f(x)5的解集為{x|x>2或x<-3}.
(1)求a的值;
(2)若不等式f(x)-f≤k在R上有解,求k的取值范圍.
解:(1)由|ax+1|>5得ax>4或ax<-6.
又f(x)>5的解集為{x|x>2或x<-3},
當a>0時,解得x>或
12、x<-,則a=2;
當a≤0時,經(jīng)驗證不合題意.
綜上,a=2.
(2)設g(x)=f(x)-f,
則g(x)=
則函數(shù)g(x)的圖像如圖所示,
由圖像可知,g(x)≥-,
故原不等式在R上有解時,k≥-.
即k的取值范圍是.
熱點三
不等式的證明
[例3] (2013·新課標全國卷Ⅱ)設a,b,c均為正數(shù),且a+b+c=1.證明:
(1) ab+bc+ac≤;
(2) ++≥1.
[自主解答] (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,得a2+b2+c2≥ab+bc+ac.
由題設得(a+b+c)2=1,即a2+b2+c2+2
13、ab+2bc+2ac=1.
所以3(ab+bc+ac)≤1,即ab+bc+ac≤.
(2)因為+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.
所以++≥1.
——————————規(guī)律·總結(jié)——————————————————————
不等式證明的常用方法是:比較法、綜合法與分析法.其中運用綜合法證明不等式時,主要是運用基本不等式與柯西不等式證明,與絕對值有關的不等式證明常用絕對值三角不等式.證明過程中一方面要注意不等式成立的條件,另一方面要善于對式子進行恰當?shù)霓D(zhuǎn)化、變形.
3.(1)設a≥b>0,證明:3a3+2b3≥3a
14、2b+2ab2;
(2)證明:a6+8b6+c6≥2a2b2c2;
(3)若a,b,c為正實數(shù),證明:a2+4b2+9c2≥2ab+3ac+6bc.
證明:(1)3a3+2b3-(3a2b+2ab2)=3a2(a-b)-2b2(a-b)=(a-b)(3a2-2b2).
∵a≥b>0,∴a-b≥0,3a2-2b2>0.
∴(a-b)(3a2-2b2)≥0.
∴3a3+2b3≥3a2b+2ab2.
(2)a6+8b6+c6≥3 =3×a2b2c2=2a2b2c2,
∴a6+8b6+c6≥2a2b2c2.
(3)∵a2+4b2≥2=4ab,
a2+9c2≥2=6ac,
4b2+
15、9c2≥2=12bc,
∴2a2+8b2+18c2≥4ab+6ac+12bc,
∴a2+4b2+9c2≥2ab+3ac+6bc.
熱點四
不等式的綜合應用
[例4] 已知a,b為正實數(shù).
(1)求證:+≥a+b;
(2)利用(1)的結(jié)論,求函數(shù)y=+(00,b>0,
∴(a+b)=a2+b2++≥a2+b2+2ab=(a+b)2.
∴+≥a+b,當且僅當a=b時等號成立.
法二:+-(a+b)=
==
=,
又∵a>0,b>0,∴≥0,當且僅當a=b時等號成立.
∴+≥a+b.
(2)∵0
16、<1,∴1-x>0,
由(1)的結(jié)論,得函數(shù)y=+≥(1-x)+x=1,
當且僅當1-x=x,即x=時等號成立.
∴函數(shù)y=+(0