2018年中考數(shù)學試題分類匯編 知識點33 圓的基本性質
《2018年中考數(shù)學試題分類匯編 知識點33 圓的基本性質》由會員分享,可在線閱讀,更多相關《2018年中考數(shù)學試題分類匯編 知識點33 圓的基本性質(55頁珍藏版)》請在裝配圖網上搜索。
1、知識點33 圓的基本性質一、選擇題1. (2018浙江衢州,第5題,3分)如圖,點A,B,C在O上,ACB=35,則AOB的度數(shù)是( )第5題圖A75 B70 C65 D35【答案】B【解析】本題考查了圓周角定理等知識,解題的關鍵是明確圓周角定理AOB與ACB所對的弧相等,AOB是圓心角,ACB是圓周角,故得到AOB=70,故選B.【知識點】圓周角定理2. (2018浙江衢州,第10題,3分)如圖,AC是O的直徑,弦BDAO于E,連接BC,過點O作OFBC于F,若BD=8cm,AE=2cm,則OF的長度是( )A3cm Bcm C2.5cm Dcm【答案】D【解析】本題考查了垂徑定理、中位線定
2、理、勾股定理等知識. 連接AB,因為AC為直徑,ACBD,故BE=ED,又因為OFBC,根據(jù)垂徑定理可知BF=CF,故可得知OF為ABC的中位線,從而得到OF=0.5AB,易得BE=4,利用勾股定理得到AB的值,故解得。連接AB,因為AC為直徑,故ABC為直角,又ACBD,BE=ED=82=4,AE=2,根據(jù)勾股定理可得:AB=又OFBC,根據(jù)垂徑定理可知BF=CF,故可得知OF為ABC的中位線,OF=AB=故選D。第10題圖【知識點】垂徑定理、中位線定理、勾股定理;3. (2018甘肅白銀,9,3) 如圖,A過點O(0,0),D(0,1),點B是軸下方A上的一點,連接BO,BD,則OBD的度
3、數(shù)是( ) A.15,B.30 C.45 D.60【答案】B【思路分析】由DOC=90,于是想到連接DC由題意知DO=1,OC=,所以算出直徑DC=2,由此得DCO=30,所以OBD=OCD=30?!窘忸}過程】連接DC.在A中,DOC=90,DC過圓心A,即DC是A的直徑。,D(0,1)DO=1,CO=在RTDOC中,CD=DCO=30。OBD=DCO=30。故選B【知識點】90的圓周角所對的弦是直徑;一條直角邊等于斜邊的一半則這條直角邊所對的角是30;同弧所對的圓周角相等。4. (2018山東聊城,7,3分)如圖,中,弦BC與半徑OA相交于點D,連接AB、OC.若A=60,ADC=85,則C
4、的度數(shù)是( ) A.25 B.27.5 C.30 D.35 【答案】C【解析】A=60,ADC=85,B=ADC-A=85-60=25,O=2B=225=50,C=ADC-O=85-50=30,【知識點】三角形內外角的關系、圓周角定理、5. (2018年山東省棗莊市,8,3分)如圖,是的直徑,弦交于點,則的長為( )A B C D8【答案】C【思路分析】過O作OECD于E,連接OD,在RtOEP中,由OPE=30,OP=2計算OE的長;在RtOCE中,由OC和OE的長利用勾股定理計算CE的長;最后得出CD=2CE即可.【解題過程】過O點作OECD于E,AB=8, OA=OB=4, OP=2,O
5、E=OP=1.在RtOCE中,CE=OECD,O是圓心,CD=2CE=.故選C.【知識點】 垂徑定理;勾股定理6.(2018四川省南充市,第5題,3分)如圖,BC是O的直徑,A是O上的一點,OAC=32,則B的度數(shù)是( )A58 B60 C64 D68【答案】A【解析】解:BC是O的直徑,CAB=90,OA=OC,OAC=32,C=OAC=32,B=90 32=58,故選A.【知識點】直徑所對圓周角是直角;等腰三角形的性質;直角三角形的兩銳角互余7. (2018江蘇省鹽城市,7,3分)如圖,AB為O的直徑,CD為O的弦,ADC35,則CAB的度數(shù)為( )A35 B45 C55 D65 【答案】
6、C【解析】AB為O的直徑,ACB90,ABCADC35,CAB65故選C.【知識點】圓的基本性質8. (2018山東省濟寧市,4,3)如圖,點B,C,D在O上,若BCD=130,則BOD的度數(shù)是 ( )A.50 B.60 C.80 D.100【答案】D【解析】先找出圓周角BCD所對的優(yōu)弧度數(shù)為260,再結合圖形確定劣弧BD的度數(shù)為100,從而根據(jù)圓心角BOD與劣弧BD的度數(shù)之間的相等關系,即BOD的度數(shù)是100,因此,本題應該選D.【知識點】圓周角 圓心角9.(2018山東青島中考,5,3分)如圖,點在O上,點是的中點,則的度數(shù)是( )A B C D【答案】D【解析】連接OB,點是的中點,AO
7、B=AOC=70AOB是所對的圓心角,D是所對的圓周角,D=AOB=35故選D【知識點】弧、弦、圓心角的關系;圓周角定理10. (2018山東威海,10,3分)如圖,O的半徑為5,AB為弦,點C為的中點,若ABC30,則弦AB的長為( )AB5CD【答案】D【解析】如圖,連接OA、OC,OC 交AB于點M根據(jù)垂徑定理可知OC垂直平分AB,因為ABC30,故AOC60,在RtAOM中,sin60,故AM,即AB故選D【知識點】垂徑定理、銳角三角函數(shù)1. (2018山東菏澤,6,3分)如圖,在O中,OCAB,ADC=32,則OBA的度數(shù)是( )A64 B58 C32 D26【答案】D【解析】OCA
8、B,=ADC是所對的圓周角,BOC是所對的圓心角,BOC=2ADC=64,OBA=90BOC=9064=26故選D【知識點】垂徑定理;圓周角定理及推論;2. (2018四川遂寧,8,4分) 如圖,在O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是( )A5 B6 C7 D8【答案】B.【解析】解:設O的半徑為r,則OA=OE=OC=r,OCAB,AD=AB=.CD=1,OD=r-1,OD2+AD2=OA2,(r-1)2+()2=r2,r=4,OD=3.AE是O的直徑,ABBE,ODBE,BE=2OD=6.故選B.【知識點】垂徑定理,勾股定理3. (201
9、8廣東廣州,7,3分)如圖,AB是O的弦,OCAB,交O于點C,連接OA,OB,BC,若ABC20,則AOB的度數(shù)是( )A40B50C70D80【答案】D【解析】因為AOC2ABC220=40,而OCAB,所以=,從而有AOB2AOC240=80;故答案為D【知識點】垂徑定理;圓周角定理4. (2018貴州遵義,12題,3分)如圖,四邊形ABCD中,ADBC,ABC=90,AB=5,BC=10,連接AC、BD,以BD為直徑的圓交AC于點E,若DE=3,則AD的長為A.5 B.4 C. D.第12題圖【答案】D【解析】連接BE,因為DAE=DBE,DAE=ACB,所以DBE=ACB,因為BD是
10、直徑,所以BED=90,DAB=90,因為ADBC,所以ABC=180-DAB=90,所以BED=ABC,BEDCBA,所以,得到BE=6,RtBED中,可得BD=,在RtADB中,可得AD=,故選D【知識點】圓的對稱性,圓周角定理,相似三角形5. (2018江蘇淮安,8,3) 如圖,點A、B、C都在O上,若AOC=140,則B的度數(shù)是A. 70 B. 80 C. 110 D. 140【答案】C【解析】分析:本題考查圓周角定理,由 AOC=140可得優(yōu)角AOC的度數(shù),再由圓周角定理可得結果.解:由AOC=140可得優(yōu)角AOC=220由圓周角定理可得 故選:C【知識點】圓周角定理;圓周角性質6.
11、(2018福建A卷,9,4)如圖,AB是O的直徑,BC與O相切于點B,AC交O于點D,若ACB=50,則BOD等于 ( )A40 B. 50 C. 60 D. 80【答案】D【解析】根據(jù)同弧所對的圓周角等于這條弧所對圓心角的一半,即可求出結果. 解: AB是O的直徑,ABC=90,ACB=50,A=90-ACB=40,BOD=2A=80.【知識點】圓;圓的有關性質;圓心角、圓周角定理7. (2018福建B卷,9,4)如圖,AB是O的直徑,BC與O相切于點B,AC交O于點D,若ACB=50,則BOD等于 ( )A40 B. 50 C. 60 D. 80【答案】D【解析】根據(jù)同弧所對的圓周角等于這
12、條弧所對圓心角的一半,即可求出結果. 解: AB是O的直徑,ABC=90,ACB=50,A=90-ACB=40,BOD=2A=80.【知識點】圓;圓的有關性質;圓心角、圓周角定理8. (2018貴州安順,T9,F(xiàn)3)已知O的直徑CD= 10cm,AB是O的弦,AB丄CD,垂足為M, 且AB = 8cm,則AC的長為( )A. cmB. cmC. cm或 cmD. cm或 cm【答案】C【解析】由題可知,直徑CD=10cm,AB丄CD, AB = 8cm,當點M在線段OC上時,OA=OC=5cm,AM=4cm.OA=AM+OM,OM=3cm,即CM=OC-OM=2cm.由勾股定理,得AC=AM+
13、CM= cm. 當點M在線段OD上時,CM=OC+CM=8cm.由勾股定理,得AC=AM+CM=cm.故AC的長為 cm或 cm.【知識點】垂徑定理,勾股定理.9.(2018四川雅安,12題,3分)如圖,AB、CE是圓O的直徑,且AB=4,點M是AB上一動點,下列結論:CED=BOD;DMCE;CM+DM的最小值為4;設OM為x,則SOMC=x,上述結論中,正確的個數(shù)是第12題圖A.1個 B.2個 C.3個 D.4個【答案】B【解析】CED=COD,因為,所以COD=BOD,所以CED=BOD,正確;M是直徑AB上一動點,而CE確定,因此DMCE不一定成立,錯誤;因為DEAB,所以D和E關于A
14、B對稱,因此CM+DM的最小值在M和O重合時取到,即CE的長,因為AB=4,所以CE=AB=4,正確;連接AC,因為,所以COA=60,則AOC為等邊三角形,邊長為2,過C作CNAO于N,則CN=,COM中,以OM為底,OM邊上的高為CN,所以,故錯誤。綜上,共2個正確,選B。第12題解圖【知識點】圓的對稱性,圓周角定理,最小值問題,等邊三角形,三角形面積10. (2018武漢市,10,3分)如圖,在O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經過AB的中點D若O的半徑為,AB4,則BC的長是( )A BC D【答案】B【思路分析】連接OD,過C作CEAB于E,過O作OFCE于F,四邊形OFED為
15、正方形;連接AC、DC,由折疊及圓內接四邊形的性質可得CA=CD,可求得ED=1,再求出CE的長,可求得BC的長.【解題過程】連接AC、DC、OD,過C作CEAB于E,過O作OFCE于F,沿BC折疊,CDB=H,H+A=180,CDA+CDB=180,A=CDA,CA=CD,CEAD,AE=ED=1,AD=2,OD=1,ODAB,OFED為正方形,OF=1,CF=2,CE=3,. 第10題答圖【知識點】軸對稱的性質 圓內接四邊形的性質 正方形的性質與判定 等腰三角形的性質與判定 勾股定理11. (2018四川自貢,9,4分)如圖,若內接于半徑為的 ,且,連接,則邊的長為( ) A. B. C.
16、 D. 【答案】A【解析】如圖所示,延長CO交于點D,連接BD,.CD是直徑,.在RtBCD中,故選擇D.【知識點】圓周角定理,解直角三角形12. (2018湖北省襄陽市,10,3分)如圖,點A、B、C、D都在半徑為2的O上,若OABC,CDA=30,則弦BC的長為()A.4B.C.D.【答案】【解析】解:AO與BC交于點E,OABC,OA為半徑,弧AC=弧AB,CE=BE,AOB=2ADC=60,在RtBOE中,BOE=60,BE=OBsin60=,BC=2BE=.故選D.【知識點】垂徑定理、圓周角定理、特殊角的三角函數(shù)13. (2018 湖南張家界,6,3分)如圖,是的直徑,弦 于點,則(
17、 ) (6題圖)【答案】A【解析】解:弦于點,AE=OA+OE=5+3=8cm. 【知識點】垂徑定理,勾股定理14. (2018山東省泰安市,12,3)如圖,的半徑為2,圓心的坐標為,點是上的任意一點,且、與軸分別交于、兩點,若點、點關于原點對稱,則的最小值為( )A3 B4 C6 D8【答案】C【思路分析】是Rt的斜邊,連接OP,則OP是Rt斜邊的中線,求的最小值的問題就轉化為求OP最小值的問題,連接OM交于點P,此時OP取得最小值.【解題過程】解;連接MO,交于點P,則點P就是所求的點,過點P作過點M作,的坐標為 由勾股定理得; 又 又OP是Rt的中線 【知識點】直角三角形性質,相似三角形
18、性質,兩點之間線段最短15. (2018陜西,9,3分)如圖,ABC是O的內接三角形,AB=AC,BCA=65,作CDAB,并與O相交于點D,連接BD,則DBC的大小為( ) A15B35C25D45【答案】A【思路分析】先求出ABC和A的度數(shù),然后根據(jù)圓周角和平行線的性質求出ABD的度數(shù),即可求出DBC的度數(shù)【解題過程】AB=AC,ABC=ACB=65A=180652=50D=A50CDAB,ABD=D=50DBC=ABCABD=6550=15故選擇A【知識點】圓的基本性質,等腰三角形的性質,平行線的性質二、填空題1. (2018江蘇無錫,16,3分)如圖,點A、B、C都在上,OCOB,點A
19、在劣弧上,且OA=AB,則ABC= . 【答案】15【思路分析】利用圓的半徑相等,OCOB,OA=AB,可以證明OBC是等腰直角三角形、ABO是等邊三角形,進而利用特殊三角形的性質求得結論.【解題過程】OCOB,OB=OC,CBO=45.OB=OA=AB,ABO=60.ABC=ABO-CBO=60-45=15.【知識點】圓的基本性質、等腰直角三角形的判定和性質、等邊三角形的判定和性質2. (2018四川省達州市,16,3分)如圖,RtABC中,C90,AC2,BC5,點D是BC邊上一點且CD1,點P是線段DB上一動 ,連接AP,以AP為斜邊在AP的下方作等腰RtAOP.當點P從點D出發(fā)運動至點
20、B停止時,點O的運動路徑長為_ 第16題圖【答案】2【解析】如圖,以AC為斜邊在AC的右下方作等腰RtAEC,以AD為斜邊在AD的右下方作等腰RtAMD,以AB為斜邊在AB的下方作等腰RtANB,連接NM并延長,則點E、點C在NM的延長線上. C90,ANB90,A、C、B、N四點共圓.ANCABCANEABC在等腰RtAEC中,AC2,AE,NE當點P與點C重合時,點O的位于點E的位置當點P從點D出發(fā)運動至點B停止時,點O的從點M出發(fā)運動至點N,MN2 【知識點】圓的基本性質;四點共圓;相似三角形的判定與性質,比例的性質3. (2018浙江紹興,14,3分) 等腰三角形中,頂角為,點在以為圓
21、心,長為半徑的圓上,且,則的度數(shù)為 【答案】或【解析】(1) 如下圖:BP=BA=AC,AP=BC,四邊形APBC為平行四邊形,BAC=ABP=40ABC=ACB=70PBC=ABPABC=70+40=110第14題(1)答圖(2) 由AP=BC,BP=AC,AB=AB;BAPABC,PBA=BAC=40;PBC=ABCABP=7040=30第14題(2)答圖【知識點】圓的相關定義、平形四邊形的判定和性質、全等三角形的判定、等腰三角形的性質。4. (2018湖南長沙,18題,3分)如圖,點A,B,D在圓O上,A=20,BC是圓O的切線,B為切點,OD的延長線交BC于點C,則OCB=_度。第18
22、題圖【答案】50【解析】A=20,由圓周角定理,O=2A=40,因為BC與圓O相切,所以OBBC,OBC=90,所以RtOBC中,OCB=90-O=50【知識點】圓周角定理,切線性質,直角三角形5. (2018山東臨沂,18,3分)如圖,在ABC中,A60,BC5cm.能夠將ABC完全覆蓋的最小圓形片的直徑是 cm 第18題圖【答案】【解析】能夠將ABC完全覆蓋的最小圓形片是如圖所示的ABC外接圓O,連接OB,OC,則BOC=2BAC=120,過點D作ODBC于點D,BOD=BOC=60,由垂徑定理得BD=BC=cm,OB=,能夠將ABC完全覆蓋的最小圓形片的直徑是.【知識點】垂徑定理 三角函
23、數(shù) 三角形外接圓6.(2018山東煙臺,16,3分)如圖,方格紙上每個小正方形的邊長均為1個單位長度,點O,A,B,C在格點(兩條網格線的交點叫格點)上,以點O為原點建立直角坐標系,則過A,B,C三點的圓的圓心坐標為 . 【答案】(1,2)【解析】如圖,連接AB,BC,分別作AB和BC的中垂線,交于G點由圖知,點G的坐標為(1,2)【知識點】垂徑定理7. (2018四川省宜賓市,15,3分)如圖,AB是半圓的直徑,AC是一條弦,D是AC的中點,DEAB于點E且DE交AC于點F,DB交AC于點G,若 =,則 = . 【答案】【解析】如圖:連接OD、AD、BC,則ADB=ACB=90,ODAC,D
24、EAB,F(xiàn)AE=FDG,AFEDOE,設OD=y,EF=3x,AE=4x,則AF=5x,AFEDOE,即,y=10x,OE=6x,DE=8x,EF=3x,DF=AF=5x,DAF=ADF,=sinCBG,CBG=DAF,sinCBG=sinDAF=sinADF=.【知識點】相似三角形的性質和判定;勾股定理;解直角三角形8. (2018浙江杭州,14,4分) 如圖,AB是O的直徑,點C是半徑OA的中點,過點C作DEAB,交O于點D,E兩點,過點D作直徑DF,連接AF,則DFA=_.【答案】30【解析】【知識點】垂徑定理,圓的角度計算1. (2018湖北鄂州,16,3分)如圖,正方形ABCD的邊長
25、為2,E為射線CD上一動點(不與C重合),以CE為邊向正方形ABCD外作正方形CEFG,連接DG,直線BE、DG相交于點P,連接AP,當線段AP的長為整數(shù)時,則AP的長為 【答案】2或1【思路分析】先利用SAS定理證明BCEDCG,從而證得BPDG,再由圓周角定理的逆定理證得A、B、C、D、P五點共圓,得到APBD即可【解析】解:四邊形ABCD和CEFG是正方形,BCEDCG90,BCCD,CECG,則在BCE和DCG中,BCEDCG(SAS),PBGDCG,又DCGDGC90,PBGBGP90,即BPG90,即BPDG,、B、C、D、P五點共圓,則BD是圓的直徑,故弦APBD,又BD,AP,
26、當線段AP的長為整數(shù)時,則AP的長為2或1【知識點】五點同圓;圓周角定理的逆定理;勾股定理;圓的性質;全等三角形的判定定理2. (2018湖北黃岡,11題,3分)如圖,ABC內接于O,AB為O的直徑,CAB=60,弦AD平分CAB,若AD=6,則AC=_第11題圖【答案】【解析】連接BD,CAB=60,弦AD平分CAB,所以DAB=30,ABC=30,因為AB是O的直徑,所以C=D=90,所以,因為C=90,CAB=60,所以ABC=30,所以第11題解圖【知識點】圓周角定理的推論,直角三角形性質,三角函數(shù)3. (2018內蒙古呼和浩特,16,3分)如圖,已知正方形ABCD,點M是邊BA延長線
27、上的動點(不與點A重合)且AMAB, CBE由DAM平移得到,若過點E作EHAC,H為垂足,則有以下結論:點M位置變化,使得DHC=60時,2BE=DM;無論點M動到何處,都有DM=HM; 無論點M運動到何處,CHM一定大于135,其中正確結論的序號為_【答案】 【解析】連接BH,易證CDHCBH.CHB=DHC=.CBH=900,EHAC,點C,B,E,H四點共圓,BEC=BHC=,BCE=,CE=2BE,由平移知DM=CE=2BE.正確.易證BEHMAH,HM=HB=HD,MHA=BHE=OBH=ODH,OHD+AHM=,DHM=,即DH是等腰直角三角形,故DM=MH.正確.由得DHM=9
28、0,CHDCAD=45,CHM135,正確;【知識點】正方形的性質,平移的性質,圓的性質,全等三角形的判定與性質4. (2018四川雅安,17題,3分)九章算術是我國古代數(shù)學成就的杰出代表作,其中方田章計算弧田面積所用的經驗公式是:弧田面積=(弦矢+矢2).弧田(如圖陰影部分),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為120,半徑等于4米的弧田,按照上述公式計算出弧田的面積為_米2.第17題圖【答案】【解析】由題可知,AOB=120,OB=4,OCAB,“矢”為CD的長,則AD=DB,RtBOD中,OBD=30,所以OD=2,“矢”
29、為CD的長,CD=2,BD=,AB=2BD=,即“弦”的長,由公式,弧田面積=(弦矢+矢2)=(2+22)=第17題解圖【知識點】垂徑定理,含30的直角三角形5. (2018湖北省孝感市,14,3分)已知O的半徑為10cm,是O的兩條弦,AB=16cm,CD=12cm,則弦和之間的距離是 【答案】2或14【解析】分兩種情況:如圖,當弦AB和CD在圓心的同側時,AB=16cm,CD=12cm,AE=AB=8cm,CF=CD=6cm,根據(jù)勾股定理,OE=6(cm),OF=8(cm).EF=OF-OE=8-6=2(cm).如圖, 當弦AB和CD在圓心的同側時,AB=16cm,CD=12cm,AE=A
30、B=8cm,CF=CD=6cm,根據(jù)勾股定理, OE=6(cm),OF=8(cm).EF=OE+OF=8+6=14(cm). 綜上,弦和之間的距離是2cm或14cm. 【知識點】垂徑定理;勾股定理.6.(2018四川涼山州,15,4分)如圖,ABC外接圓的圓心坐標是 【答案】(4,6)【解析】因為是外接圓的圓心,所以外心到三個頂點的距離都相等,等于外接圓的半徑.那么就是各邊中垂線的交點.【知識點】外接圓的圓心,中垂線,點的坐標.7. (2018四川涼山州,16,4分)如圖,AB是O的直徑,弦CDAB于E,若CD8,D60,則O的半徑為 【答案】【解析】先在RtADE中,由勾股定理建立方程,解出
31、AE.再連接OD,設OD=OA=x,則OE=4-x,在RtODE中,由勾股定理建立方程,解出x.(第16題答圖)【知識點】勾股定理,二元一次方程的解.8. (2018北京,12,2)如圖,點A,B,C,D在O上,弧CB弧CD,CAD30,ACD50,則ADB_【答案】70【解析】弧CB弧CD,CAD30,弧CB與弧CD的度數(shù)都為60ACD50,弧AD的度數(shù)都為100劣弧AB的度數(shù)都為140ADB14070【知識點】圓周角定理;圓的有關性質9.(2018廣西玉林,16題,3分)小華為了求出一個圓盤的半徑,他用所學的知識,將一寬度為2cm的刻度尺的一邊與圓盤相切,另一邊與圓盤邊緣兩個交點處的讀數(shù)分
32、別是“4”和“16”(單位:cm),請你幫小華算出圓盤的半徑是_cm第16題圖【答案】10【解析】由題可知,AB=12,CD=2,OCAB于點D,所以AD=DB=6,設OB=r,則在RtODB中,(r-2)2+62=r2,解得,r=10【知識點】垂徑定理,勾股定理10. (2018山東省泰安市,14,3)如圖,是的外接圓,則的直徑為 【答案】【解析】(1)構造以直徑BD為斜邊的Rt,根據(jù)圓周角A和圓周角D之間的關系推出是等腰直角三角形,從而可求出直徑的長。(2)連接OB、OC,根據(jù)圓心角O和圓周角A之間的關系推出是等腰直角三角形,先求出半徑OB或OC的長,從而再求出直徑的長.解法一:如圖1,過
33、點B作直徑BD,連接DC,則BCD=90 是等腰直角三角形, 根據(jù)勾股定理得:解法二:如圖2,連接OB、OC 是等腰直角三角形, 根據(jù)勾股定理得: 【知識點】圓周角性質,等腰三角形性質,勾股定理.三、解答題1. (2018四川內江,23,6) 如圖,以AB為直徑的O的圓心O到直線l的距離OE3,O的半徑r2,直線AB不垂直于直線l,過點A、B分別作直線l的垂線,垂足分別為點D、C,則四邊形ABCD的面積的最大值為 【答案】12【思路分析】由于四邊形ABCD為梯形,所以面積為兩底之和的一半再乘以高,由已知條件可以通過構造三角形的中位線,證得兩底之和與線段OE的長度有關,是一個定值,所以四邊形面積
34、的大小取決于高,當直徑AB為梯形的高時,面積最大【解題過程】解:連接DO并延長交CB的延長線于F,ADl,BCl,ADBC,DAOFBO,ADOF,OAOB,AODBOF,ADBF,ODOF,OEl,ADBCOE,DECE,OECF (BFBC)(ADBC),ADBC2OE6,四邊形ABCD的面積(ADBC)CD,當ABl時,即AB為梯形的高時四邊形ABCD的面積最大,最大值為6412【知識點】三角形中位線,梯形的面積公式;全等三角形;2. (2018安徽省,20,10分)如圖,O為銳角ABC的外接圓,半徑為5.(1)用尺規(guī)作圖作出BAC的平分線,并標出它與劣弧BC的交點E(保留作圖痕跡,不寫
35、作法);(2)若(1)中的點E到弦BC的距離為3,求弦CE的長.【思路分析】(1)按照角的平分線的尺規(guī)作圖步驟,可做成AE符合要求;(2)根據(jù)相等圓周角,確定弧BE=弧EC,根據(jù)垂徑定理知OEBC,在RtODC中以及RtDEC中,可求出CE的長【解題過程】(1)如圖所示:(2) 連接OE、OC、EC,由(1)知AE為BAC的角平分線,BAE=CAE, 弧BE=弧EC,根據(jù)垂徑定理知OEBC,則DE=3. OE=OC=5,OD=OE-DE=2. 在RtODC中,在RtDEC中, 弦CE的長為【知識點】角平分線的尺規(guī)作圖,垂徑定理,勾股定理3. (2018江蘇無錫,24,8分)如圖,四邊形ABCD
36、內接于,AB=17,CD=10,A=90,cosB=,求AD的長.【思路分析】如圖所示,延長AD、BC交于點E,利用圓內接四邊形的性質證明ECDEAB,進而利用相似三角形的性質可以求得AD的長.【解題過程】如圖所示,延長AD、BC交于點E,四邊形ABCD內接于,A=90,EDC=B,ECD=A=90,ECDEAB,.cosEDC=cosB=,CD=10,ED=,.,AD=6.【知識點】圓內接四邊形的性質、相似三角形的判定和性質、銳角三角函數(shù)的定義、勾股定理、分式方程的解法4. (2018山東省濟寧市,18,7)(7分)在一次數(shù)學活動課中,某數(shù)學小組探究求環(huán)形花壇(如圖所示)面積的方法.現(xiàn)有以下
37、工具:卷尺;直棒EF;T型尺(CD所在的直線垂直平分線段AB).(1) 在圖1中,請你畫出用T型尺找大圓圓心的示意圖(保留畫圖痕跡,不寫畫法);(2) 如圖2,小華說:“我只用一根直棒和一個卷尺就可以求出環(huán)形花壇的面積,具體做法如下:將直棒放置到與小圓相切,用卷尺量出此時直棒與大圓兩交點M,N之間的距離,就可求出環(huán)形花壇的面積.”如果測得MN=10cm,請你求出這個環(huán)形花壇的面積.【思路分析】(1)根據(jù)垂徑定理,可知:圓心O必在直線CD上,則直線CD與CD的交點即為所求的點O;(2)設切點為C,連接OM,OC從而化歸直角三角形中,應用勾股定理即可解決問題.【解題過程】(1)如圖點O即為所求;(
38、2)設切點為C,連接OM,OC MN是切線,OCMN,CM=CN=5, OM2-OC2=CM2=25,S圓環(huán)=OM2-OC2=25【知識點】尺規(guī)作圖的應用 線段的垂直平分線的性質 垂徑定理 勾股定理1. (2018貴州遵義,26題,12分)如圖,AB是半圓O的直徑,C是AB延長線上的點,AC的垂直平分線交半圓于點D,交AC于點E,連接DA、DC,已知半圓O的半徑為3,BC=2(1)求AD的長;(2)點P是線段AC上一動點,連接DP,做DPF=DAC,PF交線段CD于點F,當DPF為等腰三角形時,求AP的長。第26題圖【思路分析】(1)連接OD,通過已知線段長度和DE是AC的垂直平分線求得OE長
39、,在RtDOE中求得DE長,進而在RtADE中求得AD長;(2)因為等腰三角形不確定,應分類討論當DP=DF時,P與A重合,當PD=PF時,可通過相似得到CDP是等腰三角形,從而求出CP和AP,當FP=FD時,可通過角的等量代換得到CDP是等腰三角形,在RtDEP中利用勾股定理求得DP,從而求出CP和AP?!窘馕觥浚?)如圖1,連接OD,因為半徑為3,所以OA=OB=OD=3,因為BC=2,所以AC=8,因為DE垂直平分AC,所以DA=DC,AE=4,DEO=90,OE=1,在RtDOE中,在RtADE中,第26題解圖1(2)因為PDF為等腰三角形,因此分類討論:當DP=DF時,如圖2,A與P
40、重合,則AP=0第26題解圖2當PD=PF時,如圖3,因為DPF=A=C,PDF=CDP ,所以PDFCDP,因為PD=PF,所以CP=CD,所以CP=,AP=AC-PC=第26題解圖3當FP=FD時,如圖4,因為FDP和DAC都是等腰三角形,DPF=A,所以FDP=DPF=A=C,所以,設DP=PC=x,則EP=4-x,在RtDEP中,DE2+EP2=DP2,得,得x=3,則AP=5第26題解圖4綜上所述,當DPF為等腰三角形時,AP的長可能為0,5【知識點】勾股定理,等腰三角形,相似三角形2. (2018河北省,23,9)如圖,AB50,P為AB的中點,點M為射線AC上(不與點A重合)的任
41、意一點,連接MP,并使MP的延長線交射線BD于點N,設BPNa (1)求證:APMBPN; (2)當MN2BN時,求的度數(shù); (3)若BPN的外心在該三角形的內部,直接寫出的取值范圍 第23題圖【思路分析】(1)根據(jù)已知條件可知,APM與BPN存在兩組對應角及其中一條邊對應相等,可證全等;(2)當MN2BN時,利用第(1)的結論,可得到BPN為等腰三角形,從而求出的度數(shù);(3)根據(jù)三角形外心的特點:銳角三角形外心的三角形內部,直角三角形外心在斜邊中點,鈍角三角形外心在三角形外部可求得的度數(shù)【解析】(1)P為AB的中點, APBP1分 又AB,PAMBPN, APMBPN2分 (2)APMBPN
42、, PMPN1分 MN2BN, BNPN B502分 (3)BPN的外心在該三角形的內部, BPN是銳角三角形1分 090,01805090 40902分【知識點】三角形全等,等腰三角形性質,三角形內角和,三角形的外心3. (2018湖南省湘潭市,25,10分)如圖,AB是以O為圓心的半圓的直徑,半徑COAO,點M是上的動點,且不與點A、C、B重合,直線AM交直線OC于點D,連結OM與CM(1)若半圓的半徑為10當AOM=60時,求DM的長;當AM=12時,求DM的長(2)探究:在點M運動的過程中,DMC的大小是否為定值?若是,求出該定值;若不是,請說明理由 【思路分析】(1)當AOM=60時
43、,D=30,AMO為等邊三角形,然后根據(jù)含有30角的直角三角形的性質得到AD=2AO,再結合AMO為等邊三角形求出DM的長;連接BM,則可得AMB=90,根據(jù)兩個角相等的三角形是相似三角形得到AODABM,從而得到求出AD的長,進而求出DM的長;(2)在圖a中,由于AB是直徑,所以AMB=90,所以DMC+CMB=90,然后根據(jù)所對的圓心角與圓周角的關系得到CMB=COB,從而得到DMC的度數(shù)為45,是一個定值;在圖b中,連接AC、MB,由于ACMB是圓內接四邊形,根據(jù)性質可得CMB與CAO互補,再結合ACO為等腰直角三角形,從而得到DMC的度數(shù)仍然是一個定值.【解析】解:(1)當AOM=60
44、時,OM=OA,AMO是等邊三角形,A=MOA=60,MOD=30,D=30,COAO,AD=2AO=20,DM=OM=10.連接MB,AB是直徑,AMB=90,COAO,AOD=90,A=A,ADOABM,AO=10,AM=12,AD=,DM=AD-AM=(2)當點M位于之間時,連接BM,如圖:AB是直徑,AMB=90,DMC+CMB=90,CMB=COB=45,CMD=45;當點M位于之間時,連接BM、AC,如圖:四邊形ACMB為圓內接四邊形,CMB+CAO=180,COAO,AOD=90,ACO為等腰之間三角形,CAO=45,AMB=90,DMC=180-90-45=45.綜上所述,CM
45、D=45.【知識點】圓內接四邊形;圓周角定理;等邊三角形的性質;含30直角三角形的性質4. (2018福建A卷,24,12)如圖1,四邊形ABCD內接于O,AC為直徑,DEAB交AB于點E,交O于點F(1)延長DC、FB交于點P,求證:PB=PC;(2) 如圖2,過點B作BGAD于點G,交DE于H若AB=,DH=1,OHD=80,求EDB的度數(shù)EE(圖2)【思路分析】(1)利用直徑所對的圓周角為直角,推出DEA=ABC,判定出BE、DF的位置關系,進而得出F=PBC,再根據(jù)“同角的補角相等”證得PCB=F,代換出PCB、PBC的關系,就可得出結論PB=PC;(2)先判定四邊形DHBC是平行四邊
46、形,利用正弦函數(shù)求得ACB度數(shù),然后根據(jù)等腰三角形性質和平行線性質計算出EDB的度數(shù).【解題過程】解:(1)AC是O的直徑,ABC=90,DEAB,DEA=90,DEA=ABC,BEDF,F(xiàn)=PBC,四邊形BCDF是圓內接四邊形,F(xiàn)+DCB=180,又PCB+DCB=180,PCB=F,PCB=PBC,PC=PB;(2)如圖2,連結OD,AC是O的直徑,ADC=90,BGAD,AGB=90,ADC=AGB,BGDC,又BCDE,四邊形DHBC為平行四邊形,BC=DH=1,在ABC中,AB=,ACB=60,從而BC=AC=OD,DH=OD,在等腰三角形DOH中,DOH=OHD=80,ODH=20
47、,設DE交AC于N,BCDE,ONH=ACB=60,NOH=180-(ONH+OHD)=40,DOC=DOH-NOH=40,OA=OD,OAD=DOC=20,則CBD=OAD=20,BCDE,BDE-CBD=20.【知識點】等腰三角形的性質;圓;平行線判定及性質,直角三角形性質5. (2018福建B卷,24,12)如圖,D是ABC外接圓上的動點,且B,D位于AC的兩側,DEAB,垂足為E,DE的延長線交此圓于點F,BGAD,垂足為G,BG交DE于點H,DC,FB的延長線交于點P,且PC=PB.(1)求證:BGCD;(2)設ABC的外接圓的圓心為O,若AB=DH, OHD=80,求BDE的大小.
48、【思路分析】(1)先利用等腰三角形性質、圓內接四邊形性質推出角相等,從而證得BC、DF的位置關系,再利用平行線性質證得ABC=90,得出AC是圓的直徑,由此可計算出ADC度數(shù),再由BGAD,即可證得結論;(2)先判定四邊形DHBC是平行四邊形,利用正弦函數(shù)求得ACB度數(shù),分別判斷出BC、AC和DH、AC的數(shù)量關系,再分兩種情況討論,利用根據(jù)等腰三角形性質計算出EDB的度數(shù).【解題過程】解:(1)PC=PB,PCB=PBC,四邊形ABCD是圓內接四邊形,BAD+BCD=180,又PCB+BCD=180,PCB=BAD,BAD=BFD,BFD=PCB=PBC,BCDF,DEAB,DEB=90,AB
49、C=90,AC是圓的直徑,ADC=90,BGAD,AGB=90,ADC=AGB,BGCD。(2)由(1)知BCDF,BGCD,四邊形BCDH為平行四邊形,BC=DH,在ABC中,AB=DH,ACB=60,BAC=30,ADB=60,BC=AC,DH=AC。()當點O在DE的左側時,如圖1,作直徑DM,連結AM,則DAM=90,AMD+ADM=90,DEAB,BED=90,ABD+BDE=90,AMD=ABD,ADM=BDE。DH=AC,DH=OD,DOH=OHD=80,ODH=20,ADB=60,ADM+BDE=40,ADM=BDE=20;()當點O在DE的右側時,如圖2,作直徑DN,連結BN
50、,同()可得ADE=BDN=20,ODH=20,BDE=BDN+ODH=40,綜上,BDE =20或BDE=40?!局R點】等腰三角形的性質;平行線的判定及性質;圓周角的性質6.(2018廣東省深圳市,22,?分)如圖在O中,BC2,ABAC,點D為AC上的動點,且cosABC.(1)求AB的長度;(2)求ADAE的值;(3)過A點作AHBD,求證:BHCDDH.【思路分析】(1)過點A作AMBC于點M,由垂徑定理可得BMMCBC1,再由cosABC即可求出AB的長度;(2)由ABAC,可得ABCACB,然后由圓內接四邊形對角互補可證得ADCACE,從而證出EACCAD,從而求出ADAE的值;
51、(3)在BD上取一點N,使得BNCD,可證得ABNACD,可得ANAD,再由等腰三角形三線合一的性質可得DHNH,即可證得BHCDDH.【解題過程】解:(1)過點A作AMBC于點M,ABAC,AMBC ,BC2,BMMCBC1,又cosABC,則在RtAMB中,即,解得AB;(2)連接CD,ABAC,ABCACB,四邊形ABCD內接于O,ADCABC180,又ACEACB180,ADCACE,又EACDAC,EACCAD,即,ADAE10;(3)在BD上取一點N,使得BNCD,則在ABN和ACD中,ABNACD(SAS),ANAD,又AHBD,DHNH,又BNCD,BHBNNHCDDH.【知識
52、點】銳角的三角函數(shù);圓周角定理的推論;垂徑定理;等腰三角形的性質;相似三角形的性質和判定;全等三角形的性質和判定7. (2018河南,22,10分)(1)問題發(fā)現(xiàn)如圖1,在OAB和OCD中,OA=OB,OC=OD,AOB=COD=40,連接AC,BD交于點M填空:的值為 ;AMB的度數(shù)為 (2)類比探究如圖2,在OAB和OCD中, AOB = COD = 90,OAB=OCD=30, 連接AC交BD的延長線于點M請判斷的值及AMB的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將OCD繞點O在平面內旋轉,AC,BD所在直線交于點M若OD=1, OB=,請直接寫出當點C與點M重合時AC的長【思路分析】(1)依據(jù)條件,構造三角形全等,得到對應邊相等,比值為1;對應角相等,再根據(jù)三角形內角和為180,求出AMB的度數(shù).或者由題意可知OAC可由OBD旋轉而得到,所以根據(jù)對應邊所在直線夾角等于旋轉角這一性質得到AMB的度數(shù).(2)首先由含30角的直角三角形的三邊關系得到.由(1)中三角形全等過渡到第二問三角形相似(根據(jù)兩邊對應成比例且夾角相等兩三角形相似),得到=.且對應角相等,即CAO=BOD,再根據(jù)三角形內角和得到AMD=AOB=90.(3)畫出符合要求的圖形
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。