《高考文科數(shù)學(xué)二輪分層特訓(xùn)卷:主觀題專練 函數(shù)與導(dǎo)數(shù)11 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高考文科數(shù)學(xué)二輪分層特訓(xùn)卷:主觀題專練 函數(shù)與導(dǎo)數(shù)11 Word版含解析(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、函數(shù)與導(dǎo)數(shù)(11)12018北京卷設(shè)函數(shù)f(x)ax2(4a1)x4a3ex.(1)若曲線yf(x)在點(1,f(1)處的切線與x軸平行,求a;(2)若f(x)在x2處取得極小值,求a的取值范圍解析:(1)因為f(x)ax2(4a1)x4a3ex,所以f(x)ax2(2a1)x2ex.所以f(1)(1a)e.由題設(shè)知f(1)0,即(1a)e0,解得a1.此時f(1)3e0.所以a的值為1.(2)由(1)得f(x)ax2(2a1)x2ex(ax1)(x2)ex.若a,則當(dāng)x時,f(x)0.所以f(x)在x2處取得極小值若a,則當(dāng)x(0,2)時,x20,ax1x10.所以2不是f(x)的極小值點綜
2、上可知,a的取值范圍是.22019安徽省安慶市高三模擬已知函數(shù)f(x)eln xax(aR)(1)討論f(x)的單調(diào)性;(2)當(dāng)ae時,證明:xf(x)ex2ex0.解析:解法一(1)f(x)a(x0),若a0,則f(x)0,f(x)在(0,)上單調(diào)遞增若a0,則當(dāng)0x0;當(dāng)x時,f(x)0,所以只需證f(x)2e,由(1)知,當(dāng)ae時,f(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,所以f(x)maxf(1)e.設(shè)g(x)2e(x0),則g(x),所以當(dāng)0x1時,g(x)1時,g(x)0,g(x)單調(diào)遞增,所以g(x)ming(1)e.所以當(dāng)x0時,f(x)g(x),即f(x)2e,即
3、xf(x)ex2ex0.解法二(1)同解法一(2)證明:由題意知,即證exln xex2ex2ex0(x0),從而等價于ln xx2.設(shè)函數(shù)g(x)ln xx2,則g(x)1.所以當(dāng)x(0,1)時,g(x)0;當(dāng)x(1,)時,g(x)0,故g(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減從而g(x)在(0,)上的最大值為g(1)1.設(shè)函數(shù)h(x),則h(x).所以當(dāng)x(0,1)時,h(x)0.故h(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增從而h(x)在(0,)上的最小值為h(1)1.綜上,當(dāng)x0時,g(x)h(x),即xf(x)ex2ex0.32019甘肅第二次診斷已知函數(shù)f(x)
4、2x2ax1ln x(aR)(1)若a0,求曲線yf(x)在點(1,f(1)處的切線方程;(2)若a5,求f(x)的單調(diào)區(qū)間;(3)若30,所以f(x)在和(1,)上單調(diào)遞增當(dāng)x時,f(x)0,所以f(x)在上單調(diào)遞減(3)由f(x)2x2ax1ln x得f(x)4xa.設(shè)h(x)4x2ax1,a216,當(dāng)3a4時,0,有h(x)0,即f(x)0,故f(x)在(0,)上單調(diào)遞增又f(1)3a0,所以f(x)在x1,e上有唯一零點42019武漢調(diào)研已知函數(shù)f(x)ln(x1),其中a為常數(shù)(1)當(dāng)10時,求g(x)xlnln(1x)的最大值解析:(1)函數(shù)f(x)的定義域為(1,),f(x),x
5、1.當(dāng)12a30,即1a時,當(dāng)1x0時,f(x)0,f(x)單調(diào)遞增,當(dāng)2a3x0時,f(x)0,即a時,當(dāng)1x2a3時,f(x)0,則f(x)在(1,0),(2a3,)上單調(diào)遞增,當(dāng)0x2a3時,f(x)0,則f(x)在(0,2a3)上單調(diào)遞減綜上,當(dāng)1a時,f(x)在(1,2a3),(0,)上單調(diào)遞增,在(2a3,0)上單調(diào)遞減;當(dāng)a時,f(x)在(1,)上單調(diào)遞增;當(dāng)a2時,f(x)在(1,0),(2a3,)上單調(diào)遞增,在(0,2a3)上單調(diào)遞減(2)g(x)ln(1x)xlnxg,g(x)在(0,)上的最大值等價于g(x)在(0,1上的最大值令h(x)g(x)ln(1x)(lnx1)l
6、n(1x)lnx,則h(x).由(1)可知當(dāng)a2時,f(x)在(0,1上單調(diào)遞減,f(x)f(0)0,h(x)0,從而h(x)在(0,1上單調(diào)遞減,h(x)h(1)0,g(x)在(0,1上單調(diào)遞增,g(x)g(1)2ln2,g(x)的最大值為2ln2.52019湖北省七市教科研協(xié)作高三聯(lián)考已知函數(shù)f(x)(x1)exax2(e是自然對數(shù)的底數(shù),aR)(1)判斷函數(shù)f(x)極值點的個數(shù),并說明理由;(2)若xR,f(x)exx3x,求a的取值范圍解析:(1)f(x)的定義域為R,f(x)xex2axx(ex2a)當(dāng)a0時,f(x)在(,0)上單調(diào)遞減,在(0,)上單調(diào)遞增,f(x)有1個極值點;
7、當(dāng)0a時,f(x)在(,0)上單調(diào)遞增,在(0,ln(2a)上單調(diào)遞減,在(ln(2a),)上單調(diào)遞增,f(x)有2個極值點,綜上所述,當(dāng)a0時,f(x)有1個極值點;當(dāng)a0且a時,f(x)有2個極值點;當(dāng)a時,f(x)沒有極值點(2)由f(x)exx3x,得xexx3ax2x0.當(dāng)x0時,exx2ax10,即a對x0恒成立設(shè)g(x)(x0),則g(x).設(shè)h(x)exx1(x0),則h(x)ex1.x0,h(x)0,h(x)在(0,)上單調(diào)遞增,h(x)h(0)0,即exx1,g(x)在(0,1)上單調(diào)遞減,在(1,)上單調(diào)遞增,g(x)g(1)e2,ae2;當(dāng)x0時,原不等式恒成立,aR;
8、當(dāng)x0時,exx2ax10,設(shè)m(x)exx2ax1(x0),則m(x)ex2xa.設(shè)(x)ex2xa(x0),則(x)ex2m(0)1a,若a1,則m(x)0,m(x)在(,0)上單調(diào)遞增,m(x)1,m(0)1a0,x00,使得x(x0,0)時,m(x)m(0)0,不符合題意,舍去a1.綜上,a的取值范圍是(,e262019貴陽市普通高中高三年級摸底考試已知函數(shù)f(x)xln xaxa(aR)(1)f(x)在點(1,f(1)處的切線方程為yxt,求a和t的值;(2)對任意的x1,f(x)0恒成立,求a的取值范圍解析:(1)函數(shù)定義域為x(0,),f(x)ln x1a,由已知f(1)1,則1
9、a1,即a2,所以f(1)0220,將(1,0)代入切線方程有t1,所以a2,t1.(2)對任意x(1,),f(x)0恒成立,即ln xa0恒成立,令g(x)ln xa,有g(shù)(x),當(dāng)a1時,g(x),g(x)隨x的變化情況為x(1,a)a(a,)g(x)0g(x)單調(diào)遞減極小值單調(diào)遞增由表可知g(x)ming(a)ln a1a,又因為在函數(shù)h(x)ln x1x中,h(x),所以h(x)在(0,1)上單調(diào)遞增,在(1,)上單調(diào)遞減,所以h(x)h(1)0,所以g(x)ming(a)h(a)1不合題意;當(dāng)a1時,g(x)0,則g(x)在1,)上單調(diào)遞增,所以g(x)g(1)0,即對任意x(1,),ln xa0恒成立,故a1滿足題意,綜上所述,實數(shù)a的取值范圍為(,1