2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題28 綜合能力提升(含解析)
《2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題28 綜合能力提升(含解析)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020年中考數(shù)學(xué)基礎(chǔ)題型提分講練 專題28 綜合能力提升(含解析)(24頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、專題28 綜合能力提升專題卷 (時(shí)間:90分鐘 滿分120分) 一、選擇題(每小題3分,共36分) 1.(2018·福建廈門一中初二期中)化簡(jiǎn)的結(jié)果正確的是( ) A.﹣2 B.2 C.±2 D.4 【答案】B 【解析】 根據(jù)二次根式的性質(zhì)可得原式=2,故選B. 2.(2019·黑龍江初三月考)下列等式正確的是( ?。? A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3 【答案】A 【解析】 ()2=3,A正確; =3,B錯(cuò)誤; =,C錯(cuò)誤; (-)2=3,D錯(cuò)誤; 故選:A. 點(diǎn)睛:本題考查的是二次根式的化簡(jiǎn),掌握二次根式的性質(zhì):=|a|是解
2、題的關(guān)鍵. 3.(2019·重慶八中初二開學(xué)考試)估計(jì)的值應(yīng)在( ) A.4和5之間 B.5和6之間 C.6和7之間 D.7和8之間 【答案】C 【解析】 解:=2+6=2+ 又因?yàn)?<<5 所以6<2+<7 故答案為C. 【點(diǎn)睛】 本題考查了二次根式的化簡(jiǎn),其中明確化簡(jiǎn)方向和正確的估值是解題的關(guān)鍵. 4.(2019·河南初三期中)已知2是關(guān)于x的方程x2-2mx+3m=0的一個(gè)根,并且這個(gè)方程的兩個(gè)根恰好是等腰三角形ABC的兩條邊長(zhǎng),則三角形ABC的周長(zhǎng)為( ?。? A.10 B.14 C.10或14 D.8或10 【答案】B 【解析】 ∵2是關(guān)于x的方程x
3、2﹣2mx+3m=0的一個(gè)根, ∴22﹣4m+3m=0,m=4, ∴x2﹣8x+12=0, 解得x1=2,x2=6. ①當(dāng)6是腰時(shí),2是底邊,此時(shí)周長(zhǎng)=6+6+2=14; ②當(dāng)6是底邊時(shí),2是腰,2+2<6,不能構(gòu)成三角形. 所以它的周長(zhǎng)是14. 考點(diǎn):解一元二次方程-因式分解法;一元二次方程的解;三角形三邊關(guān)系;等腰三角形的性質(zhì). 5.(2019·保定市樂凱中學(xué)初三期中)若關(guān)于的方程的解為,則關(guān)于的方程的解為( ) A. B.或 C.或 D. 【答案】C 【解析】 ∵關(guān)于的方程的解為, ∴對(duì)于方程,, ∴, 故選C. 【點(diǎn)睛】 本題主要考查方程的
4、解的定義,掌握方程的解的定義以及解一元二次方程的方法,是解題的關(guān)鍵. 6.(2019·湖南省新化縣明德學(xué)校初二期中)已知直線與的交點(diǎn)為,則方程組的解為( ) A. B. C. D.無法確定 【答案】A 【解析】 ∵已知直線與的交點(diǎn)為, ∴方程組的解為 故選A. 【點(diǎn)睛】 此題主要考查二元一次方程組與一次函數(shù)的關(guān)系,解題的關(guān)鍵是熟知一次函數(shù)交點(diǎn)的含義. 7.(2019·四川初二期末)直角坐標(biāo)系中,點(diǎn)P(x,y)在第三象限,且P到x軸和y軸的距離分別為3、4,則點(diǎn)P的坐標(biāo)為( ) A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3) 【答案】
5、C 【解析】 解:∵點(diǎn)P(x,y)在第三象限, ∴P點(diǎn)橫縱坐標(biāo)都是負(fù)數(shù), ∵P到x軸和y軸的距離分別為3、4, ∴點(diǎn)P的坐標(biāo)為(-4,-3). 故選:C. 【點(diǎn)睛】 此題主要考查了點(diǎn)的坐標(biāo),關(guān)鍵是掌握到x軸的距離=縱坐標(biāo)的絕對(duì)值,到y(tǒng)軸的距離=橫坐標(biāo)的絕對(duì)值. 8.(2019·四川初三)有七張正面分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中隨機(jī)抽取一張,記卡片上的數(shù)字為a,則使關(guān)于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個(gè)不相等的實(shí)數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2
6、的圖象不經(jīng)過點(diǎn)(1,0)的概率是( ?。? A. B. C. D. 【答案】B 【解析】 令△=[﹣2(a﹣1)]2﹣4a(a﹣3)=4a+4>0, 解得:a>﹣1, ∴使關(guān)于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個(gè)不相等的實(shí)數(shù)根的數(shù)有0,1,2,3. 當(dāng)二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象經(jīng)過點(diǎn)(1,0)時(shí),1﹣(a2+1)﹣a+2=0, 解得:a1=﹣2,a2=1, ∴使關(guān)于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個(gè)不相等的實(shí)數(shù)根,且以x為自變量的二次函數(shù)y=x2﹣(a2+1)x﹣a+2的圖象不經(jīng)過點(diǎn)(1,0)的數(shù)字為0,2,
7、3, ∴該事件的概率為, 故選B. 【點(diǎn)睛】 本題考查了概率公式、根的判別式以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,利用根的判別式△>0及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出使得事件成立的a的值是解題的關(guān)鍵. 9.(2020·山東初三)如圖,A、B、C是小正方形的頂點(diǎn),且每個(gè)小正方形的邊長(zhǎng)為1,則tan∠BAC的值為( ?。? A. B.1 C. D. 【答案】B 【解析】 如圖,連接BC, 由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC為等腰直角三角形, ∴∠BAC=45°, 則tan∠BAC=1, 故選B. 【點(diǎn)睛】 本題考查了銳角三角函數(shù)
8、的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵. 10.(2020·河北初三期中)設(shè)α、β是方程 的兩個(gè)實(shí)數(shù)根,則 的值為( ??) A.-2014 B.2014 C.2013 D.-2013 【答案】D 【解析】 ∵α是方程x2+x+2012=0的根, ∴α2+α+2012=0,即α2+α=-2012, ∴α2+2α+β=α2+α+α+β=-2012+α+β, ∵α,β是方程x2+x+2012=0的兩個(gè)實(shí)數(shù)根, ∴α+β=-1, ∴α2+2α+β=-2012-1=-2013. 故選D. 【點(diǎn)睛】 考查了一元二次方程ax2+bx+c=0(a≠0)的
9、根與系數(shù)的關(guān)系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=,x1x2=. 11.(2020·長(zhǎng)沙外國(guó)語學(xué)校初三月考)如圖,正方形ABCD和正方形CGFE的頂點(diǎn)C,D,E在同一條直線上,頂點(diǎn)B,C,G在同一條直線上.O是EG的中點(diǎn),∠EGC的平分線GH過點(diǎn)D,交BE于點(diǎn)H,連接FH交EG于點(diǎn)M,連接OH.以下四個(gè)結(jié)論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結(jié)論是( ?。? A.①②③ B.①②④ C.①③④ D.②③④ 【答案】A 【解析】 解:如圖, ∵四邊形ABCD和四邊形CGFE是正方形, ∴BC=CD,CE=
10、CG,∠BCE=∠DCG, 在△BCE和△DCG中, ∴△BCE≌△DCG(SAS), ∴∠BEC=∠BGH, ∵∠BGH+∠CDG=90°,∠CDG=∠HDE, ∴∠BEC+∠HDE=90°, ∴GH⊥BE. 故①正確; ∵△EHG是直角三角形,O為EG的中點(diǎn), ∴OH=OG=OE, ∴點(diǎn)H在正方形CGFE的外接圓上, ∵EF=FG, ∴∠FHG=∠EHF=∠EGF=45°,∠HEG=∠HFG, ∴△EHM∽△GHF, 故②正確; ∵△BGH≌△EGH, ∴BH=EH, 又∵O是EG的中點(diǎn), ∴HO∥BG, ∴△DHN∽△DGC, 設(shè)EC和OH
11、相交于點(diǎn)N. 設(shè)HN=a,則BC=2a,設(shè)正方形ECGF的邊長(zhǎng)是2b,則NC=b,CD=2a, 即a2+2ab﹣b2=0, 解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去), 故③正確; ∵△BGH≌△EGH, ∴EG=BG, ∵HO是△EBG的中位線, ∴HO=BG, ∴HO=EG, 設(shè)正方形ECGF的邊長(zhǎng)是2b, ∴EG=2b, ∴HO=b, ∵OH∥BG,CG∥EF, ∴OH∥EF, ∴△MHO△MFE, ∴, ∴EM=OM, ∴, ∴ ∵EO=GO, ∴S△HOE=S△HOG, ∴ 故④錯(cuò)誤, 故選:A. 【點(diǎn)睛】
12、本題考查了正方形的性質(zhì),以及全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),正確求得兩個(gè)三角形的邊長(zhǎng)的比是解決本題的關(guān)鍵. 12.(2020·河北初三期中)如圖,在中,,,,點(diǎn)為的中點(diǎn),以點(diǎn)為圓心作圓心角為的扇形,點(diǎn)恰在弧上,則圖中陰影部分的面積為( ) A. B. C. D. 【答案】D 【解析】 連接CD,作DM⊥BC,DN⊥AC. ∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn), ∴DC=AB=1,四邊形DMCN是正方形,DM=. 則扇形FDE的面積是:. ∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn), ∴CD平分∠BCA, 又∵DM⊥BC,
13、DN⊥AC, ∴DM=DN, ∵∠GDH=∠MDN=90°, ∴∠GDM=∠HDN, 則在△DMG和△DNH中, , ∴△DMG≌△DNH(AAS), ∴S四邊形DGCH=S四邊形DMCN=. 則陰影部分的面積是:-. 【點(diǎn)睛】 本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵. 二、填空題(每小題3分,共18分) 13.(2019·重慶第二外國(guó)語學(xué)校初二)已知點(diǎn)在軸上,則的值是__________. 【答案】-2 【解析】 ∵點(diǎn)在軸上 ∴ 解得 故答案為:. 【點(diǎn)睛】
14、本題考查坐標(biāo)軸上的坐標(biāo),熟記x軸上的點(diǎn)縱坐標(biāo)為0,y軸上的點(diǎn)橫坐標(biāo)為0是解題的關(guān)鍵. 14.(2019·四川石室中學(xué)初二期中)若分式方程產(chǎn)生增根,則________. 【答案】 【解析】 ∵分式方程有增根 ∴ 解得 將代入中 故答案為:. 【點(diǎn)睛】 本題考查了分式方程的問題,掌握分式方程有增根的條件是解題的關(guān)鍵. 15.(2019·山東初三)若數(shù)a使關(guān)于x的分式方程=4的解為正數(shù),且使關(guān)于y,不等式組的解集為y<-2,則符合條件的所有整數(shù)a的和為______. 【答案】10 【解析】 解:分式方程+=4的解為且x≠1, ∵關(guān)于x的分式方程+=4的解
15、為正數(shù), ∴>0 且≠1, ∴a<6且a≠2. 解不等式①得:y<-2; 解不等式②得:y≤a. ∵關(guān)于y的不等式組的解集為y<-2, ∴a≥-2. ∴-2≤a<6且a≠2. ∵a為整數(shù), ∴a=-2、-1、0、1、3、4、5, (-2)+(-1)+0+1+3+4+5=10. 故答案為:10. 【點(diǎn)睛】 本題考查了分式方程的解以及解一元一次不等式,根據(jù)分式方程的解為正數(shù)結(jié)合不等式組的解集為y<-2,找出-2≤a<6且a≠2是解題的關(guān)鍵. 16.(2019·河北初一期末)若關(guān)于x的一元一次不等式組無解,則a的取值范圍是________. 【答案】a≥1 【解
16、析】 不等式組變形為 由不等式組無解,則a≥1. 故答案為a≥1. 點(diǎn)睛:不等式組無解,即x>a與x
17、翻轉(zhuǎn)變換的性質(zhì)、勾股定理,根據(jù)翻轉(zhuǎn)變換的性質(zhì)和勾股定理求出BD的長(zhǎng)是解題關(guān)鍵. 18.(2019·浙江初二期中)如圖,在平行四邊ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線上) (1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF 【答案】①②④ 【解析】 試題解析:①∵F是AD的中點(diǎn), ∴AF=FD, ∵在?ABCD中,AD=2AB, ∴AF=FD=CD, ∴∠DFC=∠DCF, ∵AD∥BC, ∴∠
18、DFC=∠FCB, ∴∠DCF=∠BCF, ∴∠DCF=∠BCD,故此選項(xiàng)正確; 延長(zhǎng)EF,交CD延長(zhǎng)線于M, ∵四邊形ABCD是平行四邊形, ∴AB∥CD, ∴∠A=∠MDF, ∵F為AD中點(diǎn), ∴AF=FD, 在△AEF和△DFM中, , ∴△AEF≌△DMF(ASA), ∴FE=MF,∠AEF=∠M, ∵CE⊥AB, ∴∠AEC=90°, ∴∠AEC=∠ECD=90°, ∵FM=EF, ∴FC=FM,故②正確; ③∵EF=FM, ∴S△EFC=S△CFM, ∵M(jìn)C>BE, ∴S△BEC<2S△EFC 故S△BEC=2S△CEF錯(cuò)誤; ④設(shè)
19、∠FEC=x,則∠FCE=x, ∴∠DCF=∠DFC=90°-x, ∴∠EFC=180°-2x, ∴∠EFD=90°-x+180°-2x=270°-3x, ∵∠AEF=90°-x, ∴∠DFE=3∠AEF,故此選項(xiàng)正確. 考點(diǎn):1.平行四邊形的性質(zhì);2.全等三角形的判定與性質(zhì);3.直角三角形斜邊上的中線. 三、解答題(每小題6分,共12分) 19.(2020·河南初三期末)計(jì)算:. 【答案】1 【解析】 原式 =1. 【點(diǎn)睛】 本題考查了二次根式的混合運(yùn)算:先把二次根式化為最簡(jiǎn)二次根式,然后進(jìn)行二次根式的乘除運(yùn)算,再合并即可.在二次根式的混合運(yùn)算中,如能結(jié)合題目
20、特點(diǎn),靈活運(yùn)用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍. 20.(2020·山東新城實(shí)驗(yàn)中學(xué)初三月考)先化簡(jiǎn),再求值:,其中a,b滿足. 【答案】-1 【解析】 解:原式 , ∵a,b滿足, ∴,, ,, 原式. 【點(diǎn)睛】 本題考查平方差公式和二次根式的性質(zhì),解題的關(guān)鍵是掌握平方差公式和二次根式的性 四、解答題(每小題8分,共16分) 21.(2020·成都嘉祥外國(guó)語學(xué)校初二開學(xué)考試)如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上). (1)把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
21、(2)把△A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2; (3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng). 【答案】(1)(2)作圖見解析;(3). 【解析】 解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線且A1C1=AC,同理找到點(diǎn)B1,分別連接三點(diǎn),△A1B1C1即為所求. (2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求. (3)∵, ∴點(diǎn)B所走的路徑總長(zhǎng)=. 考點(diǎn):1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理
22、;4.弧長(zhǎng)的計(jì)算. 22.(2018·廣東深圳實(shí)驗(yàn)學(xué)校初三月考)“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整). 請(qǐng)根據(jù)以上信息回答: (1)本次參加抽樣調(diào)查的居民有多少人? (2)將兩幅不完整的圖補(bǔ)充完整; (3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛吃D粽的人數(shù); (4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求
23、他第二個(gè)吃到的恰好是C粽的概率. 【答案】(1)600(2)見解析(3)3200(4) 【解析】 (1)60÷10%=600(人). 答:本次參加抽樣調(diào)查的居民有600人. (2)如圖;… (3)8000×40%=3200(人). 答:該居民區(qū)有8000人,估計(jì)愛吃D粽的人有3200人. (4)如圖; (列表方法略,參照給分).… P(C粽)==. 答:他第二個(gè)吃到的恰好是C粽的概率是.… 五、解答題(每小題9分,共18分) 23.(2019·山東初三期中)已知關(guān)于x的方程x2+(2k﹣1)x+k2﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2. (1)求實(shí)數(shù)k的取
24、值范圍; (2)若x1,x2滿足x12+x22=16+x1x2,求實(shí)數(shù)k的值. 【答案】(1) k≤;(2)-2. 【解析】 (1)∵關(guān)于x的方程x2+(2k﹣1)x+k2﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2, ∴△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5≥0,解得:k≤, ∴實(shí)數(shù)k的取值范圍為k≤. (2)∵關(guān)于x的方程x2+(2k﹣1)x+k2﹣1=0有兩個(gè)實(shí)數(shù)根x1,x2, ∴x1+x2=1﹣2k,x1x2=k2﹣1.∵x12+x22=(x1+x2)2﹣2x1x2=16+x1x2, ∴(1﹣2k)2﹣2×(k2﹣1)=16+(k2﹣1),即k2﹣4k﹣12=0, 解得
25、:k=﹣2或k=6(不符合題意,舍去).∴實(shí)數(shù)k的值為﹣2. 考點(diǎn):一元二次方程根與系數(shù)的關(guān)系,根的判別式. 24.(2020·江蘇省如皋中學(xué)初三)近期豬肉價(jià)格不斷走高,引起市民與政府的高度關(guān)注,當(dāng)市場(chǎng)豬肉的平均價(jià)格達(dá)到一定的單價(jià)時(shí),政府將投入儲(chǔ)備豬肉以平抑豬肉價(jià)格. (1)從今年年初至5月20日,豬肉價(jià)格不斷走高,5月20日比年初價(jià)格上漲了60%,某市民在今年5月20日購(gòu)買2.5千克豬肉至少要花100元錢,那么今年年初豬肉的最低價(jià)格為每千克多少元? (2)5月20日豬肉價(jià)格為每千克40元,5月21日,某市決定投入儲(chǔ)備豬肉,并規(guī)定其銷售價(jià)格在5月20日每千克40元的基礎(chǔ)上下調(diào)a%出售,
26、某超市按規(guī)定價(jià)出售一批儲(chǔ)備豬肉,該超市在非儲(chǔ)備豬肉的價(jià)格仍為40元的情況下,該天的兩種豬肉總銷量比5月20日增加了a%,且儲(chǔ)備豬肉的銷量占總銷量的,兩種豬肉銷售的總金額比5月20日提高了,求a的值. 【答案】(1)25元;(2)a=20. 【解析】 解:(1)設(shè)今年年初豬肉價(jià)格為每千克x元; 根據(jù)題意得:2.5×(1+60%)x≥100,解得:x≥25. 答:今年年初豬肉的最低價(jià)格為每千克25元; (2)設(shè)5月20日兩種豬肉總銷量為1; 根據(jù)題意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%), 令a%=y, 原方程化為:40(1﹣y)×(1+y)+4
27、0×(1+y)=40(1+y), 整理得:, 解得:y=0.2,或y=0(舍去), 則a%=0.2, ∴a=20. 答:a的值為20. 六、解答題(每小題10分,共20分) 25.(2020·安徽初三)如圖,點(diǎn)O是△ABC的邊AB上一點(diǎn),⊙O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF, (1)求證:∠C=90°; (2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng). 【答案】(1)見解析(2) 【解析】 解:(1)連接OE,BE, ∵DE=EF, ∴= ∴∠OBE=∠DBE ∵OE=OB, ∴∠OEB=∠OBE ∴∠OEB=∠DBE,
28、 ∴OE∥BC ∵⊙O與邊AC相切于點(diǎn)E, ∴OE⊥AC ∴BC⊥AC ∴∠C=90° (2)在△ABC,∠C=90°,BC=3,sinA=, ∴AB=5, 設(shè)⊙O的半徑為r,則AO=5﹣r, 在Rt△AOE中,sinA= ∴ ∴ 【點(diǎn)睛】 本題考查圓的綜合問題,涉及平行線的判定與性質(zhì),銳角三角函數(shù),解方程等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí). 26.(2019·河南初三)在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三
29、角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C. (1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ; (2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo); (3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由. 【答
30、案】(1);(-2,);(1,0); (2)N點(diǎn)的坐標(biāo)為(0,),(0,); (3)E(-1,-)、F(0,)或E(-1,),F(xiàn)(-4,) 【解析】 (1)∵,a=,則拋物線的“衍生直線”的解析式為; 聯(lián)立兩解析式求交點(diǎn),解得或, ∴A(-2,),B(1,0); (2)如圖1,過A作AD⊥y軸于點(diǎn)D, 在中,令y=0可求得x= -3或x=1, ∴C(-3,0),且A(-2,), ∴AC= 由翻折的性質(zhì)可知AN=AC=, ∵△AMN為該拋物線的“衍生三角形”, ∴N在y軸上,且AD=2, 在Rt△AND中,由勾股定理可得 DN=, ∵OD=, ∴ON=或ON=,
31、 ∴N點(diǎn)的坐標(biāo)為(0,),(0,); (3)①當(dāng)AC為平行四邊形的邊時(shí),如圖2 ,過F作對(duì)稱軸的垂線FH,過A作AK⊥x軸于點(diǎn)K,則有AC∥EF且AC=EF, ∴∠ ACK=∠ EFH, 在△ ACK和△ EFH中 ∴△ ACK≌△ EFH, ∴FH=CK=1,HE=AK=, ∵拋物線的對(duì)稱軸為x=-1, ∴ F點(diǎn)的橫坐標(biāo)為0或-2, ∵點(diǎn)F在直線AB上, ∴當(dāng)F點(diǎn)的橫坐標(biāo)為0時(shí),則F(0,),此時(shí)點(diǎn)E在直線AB下方, ∴E到y(tǒng)軸的距離為EH-OF=-=,即E的縱坐標(biāo)為-, ∴ E(-1,-); 當(dāng)F點(diǎn)的橫坐標(biāo)為-2時(shí),則F與A重合,不合題意,舍去; ②當(dāng)AC為平行四邊形的對(duì)角線時(shí), ∵ C(-3,0),且A(-2,),∴線段AC的中點(diǎn)坐標(biāo)為(-2.5, ), 設(shè)E(-1,t),F(xiàn)(x,y), 則x-1=2×(-2.5),y+t=,∴x= -4,y=-t, -t=-×(-4)+,解得t=, ∴E(-1,),F(xiàn)(-4,); 綜上可知存在滿足條件的點(diǎn)F,此時(shí)E(-1,-)、(0,)或E(-1,),F(xiàn)(-4,) 【點(diǎn)睛】 本題是對(duì)二次函數(shù)的綜合知識(shí)考查,熟練掌握二次函數(shù),幾何圖形及輔助線方法是解決本題的關(guān)鍵,屬于壓軸題.
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 未來產(chǎn)品設(shè)計(jì)中計(jì)算機(jī)的使用外文翻譯.doc
- The Future of Computer Use in Product Design.pdf
- 課題申報(bào)表.doc
- 設(shè)計(jì)說明書.doc
- 設(shè)計(jì)任務(wù)書.doc
- 開題報(bào)告.doc
- 實(shí)習(xí)報(bào)告.doc
- A4-限位釘-21.dwg
- A4-澆口套-16.dwg
- A4-楔塊-22.dwg
- A4-斜導(dǎo)柱-23.dwg
- A4-推板固定板-19.dwg
- A4-推板-18.dwg
- A4-推桿-20.dwg
- A4-拉料桿-17.dwg