2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課堂達(dá)標(biāo)9 二次函數(shù)與冪函數(shù) 文 新人教版
2022屆高考數(shù)學(xué)一輪復(fù)習(xí) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用 課堂達(dá)標(biāo)9 二次函數(shù)與冪函數(shù) 文 新人教版1(2018·吉林東北二模)已知冪函數(shù)f(x)xn,n2,1,1,3的圖象關(guān)于y軸對稱,則下列選項(xiàng)正確的是()Af(2)f(1)Bf(2)f(1)Cf(2)f(1) Df(2)f(1)解析由于冪函數(shù)f(x)xn的圖象關(guān)于y軸對稱,可知f(x)xn為偶函數(shù),所以n2,即f(x)x2,則有f(2)f(2),f(1)f(1)1,所以f(2)f(1)答案B2冪函數(shù)yxm24m(mZ)的圖象如圖所示,則m的值為()A0 B1C2 D3解析yxm24m(mZ)的圖象與坐標(biāo)軸沒有交點(diǎn),m24m0,即0m4,又函數(shù)的圖象關(guān)于y軸對稱,且mZ,m24m為偶數(shù),因此m2.答案C3設(shè)函數(shù)f(x)x223x60,g(x)f(x)|f(x)|,則g(1)g(2)g(20)()A56B112 C0D38解析由二次函數(shù)圖象的性質(zhì)得,當(dāng)3x20時,f(x)|f(x)|0,g(1)g(2)g(20)g(1)g(2)112.答案B4已知函數(shù)f(x)x,若0ab1,則下列各式中正確的是()Af(a)f(b)ffBfff(b)f(a)Cf(a)f(b)ffDff(a)ff(b)解析因?yàn)楹瘮?shù)f(x)x在(0,)上是增函數(shù),又0ab,故f(a)f(b)ff.答案C5(2018·吉林松原調(diào)研)設(shè)函數(shù)f(x)x2xa(a0),已知f(m)0,則()Af(m1)0 Bf(m1)0Cf(m1)0 Df(m1)0解析f(x)的對稱軸為x,f(0)a0,f(x)的大致圖象如圖所示由f(m)0,得1m0,m10,f(m1)f(0)0.答案C6(2018·安徽皖北片高三第一次聯(lián)考)已知函數(shù)f(x)x22ax1a在區(qū)間0,1上的最大值為2,則a的值為( )A2 B1或3C2或3 D1或2解析函數(shù)f(x)x22ax1a的對稱軸為xa,圖象開口向下,當(dāng)a0時,函數(shù)f(x)x22ax1a在區(qū)間0,1是減函數(shù),fmax(x)f(0)1a,由1a2,得a1,當(dāng)0a1時,函數(shù)f(x)x22ax1a在區(qū)間0,a是增函數(shù),在a,1上是減函數(shù),fmax(x)f(a)a22a21aa2a1,由a2a12,解得a或a,0a1,兩個值都不滿足;當(dāng)a1時,函數(shù)f(x)x22ax1a在區(qū)間0,1是增函數(shù),fmax(x)f(1)12a1aa,a2.綜上可知,a1或a2.故選:D.答案D7當(dāng)0x1時,函數(shù)f(x)x1.1,g(x)x0.9,h(x)x2的大小關(guān)系是_.解析如圖所示為函數(shù)f(x),g(x),h(x)在(0,1)上的圖象,由此可知,h(x)g(x)f(x)答案h(x)g(x)f(x)8對于任意實(shí)數(shù)x,函數(shù)f(x)(5a)x26xa5恒為正值,則a的取值范圍是_.解析由題意可得解得4a4.答案(4,4)9(2018·長沙模擬)若函數(shù)f(x)x23x4的定義域?yàn)?,m,值域?yàn)?,則m的取值范圍是_解析函數(shù)f(x)圖象的對稱軸為x,且f,f(3)f(0)4,由二次函數(shù)的圖象知m的取值范圍為.答案10已知函數(shù)f(x)ax22ax2b(a0),若f(x)在區(qū)間2,3上有最大值5,最小值2.(1)求a,b的值;(2)若b1,g(x)f(x)mx在2,4上單調(diào),求m的取值范圍解(1)f(x)a(x1)22ba.當(dāng)a0時,f(x)在2,3上為增函數(shù),故當(dāng)a0時,f(x)在2,3上為減函數(shù),故(2)b1,a1,b0,即f(x)x22x2.g(x)x22x2mxx2(2m)x2,g(x)在2,4上單調(diào),2或4.m2或m6.故m的取值范圍為(,26,)B能力提升練1已知f(x)32|x|,g(x)x22x,F(xiàn)(x)則F(x)的最值情況為()A最大值為3,最小值為1B最大值為72,無最小值C最大值為3,無最小值D既無最大值,又無最小值解析作出F(x)的圖象,如圖實(shí)線部分由圖象知F(x)有最大值無最小值,且最大值不是3. 答案B2關(guān)于x的二次方程(m3)x24mx2m10的兩根異號,且負(fù)根的絕對值比正根大,那么實(shí)數(shù)m的取值范圍是()A3m0 B0m3Cm3或m0 Dm0或m3解析由題意知由得3m0,故選A.答案A3若函數(shù)f(x)x2a|x1|在0,)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是_.解析f(x)x1,)時,f(x)x2axa2a,x(,1)時,f(x)x2axa2a.當(dāng)1,即a2時,f(x)在上單調(diào)遞減,在上單調(diào)遞增,不合題意;當(dāng)01,即0a2時,符合題意;當(dāng)0,即a0時,不符合題意,綜上,a的取值范圍是0,2答案0,24設(shè)f(x)與g(x)是定義在同一區(qū)間a,b上的兩個函數(shù),若函數(shù)yf(x)g(x)在xa,b上有兩個不同的零點(diǎn),則稱f(x)和g(x)在a,b上是“關(guān)聯(lián)函數(shù)”,區(qū)間a,b稱為“關(guān)聯(lián)區(qū)間”若f(x)x23x4與g(x)2xm在0,3上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍是_.解析由題意知,yf(x)g(x)x25x4m在0,3上有兩個不同的零點(diǎn)在同一直角坐標(biāo)系下作出函數(shù)ym與yx25x4(x0,3)的圖象如圖所示,結(jié)合圖象可知,當(dāng)x2,3時,yx25x4,故當(dāng)m時,函數(shù)ym與yx25x4(x0,3)的圖象有兩個交點(diǎn)答案5已知函數(shù)f(x)ax22x1.(1)試討論函數(shù)f(x)的單調(diào)性(2)若a1,且f(x)在1,3上的最大值為M(a),最小值為N(a),令g(a)M(a)N(a),求g(a)的表達(dá)式(3)在(2)的條件下,求證:g(a).解(1)當(dāng)a0時,函數(shù)f(x)2x1在(,)上為減函數(shù);當(dāng)a0時,拋物線f(x)ax22x1開口向上,對稱軸為x,所以函數(shù)f(x)在上為減函數(shù),在上為增函數(shù);當(dāng)a0時,拋物線f(x)ax22x1開口向下,對稱軸為x,所以函數(shù)f(x)在上為增函數(shù),在上為減函數(shù)(2)因?yàn)閒(x)a21,由a1得13,所以N(a)f1.當(dāng)12,即a1時,M(a)f(3)9a5,故g(a)9a6;當(dāng)23,即a時,M(a)f(1)a1,故g(a)a2.所以g(a)(3)證明:當(dāng)a時g(a)1<0,所以函數(shù)g(x)在上為減函數(shù);當(dāng)a時,g(a)90,所以函數(shù)g(a)在上為增函數(shù),所以當(dāng)a時,g(a)取最小值,g(a)ming.故g(a).C尖子生專練(2018·浙江瑞安四校聯(lián)考)已知函數(shù)f(x)x21,g(x)a|x1|.(1)若當(dāng)xR時,不等式f(x)g(x)恒成立,求實(shí)數(shù)a的取值范圍;(2)求函數(shù)h(x)|f(x)|g(x)在區(qū)間0,2上的最大值解(1)不等式f(x)g(x)對xR恒成立,即x21a|x1|(*)對xR恒成立當(dāng)x1時,(*)顯然成立,此時aR;當(dāng)x1時,(*)可變形為a,令(x)因?yàn)楫?dāng)x1時,(x)2,當(dāng)x1時,(x)2,所以(x)2,故此時a2.綜合,得所求實(shí)數(shù)a的取值范圍是(,2(2)h(x)當(dāng)0時,即a0,(x2axa1)maxh(0)a1,(x2axa1)maxh(2)a3.此時,h(x)maxa3.當(dāng)01時,即2a0,(x2axa1)maxha1,(x2axa1)maxh(2)a3.此時h(x)maxa3.當(dāng)12時,即4a2,(x2axa1)maxh(1)0,(x2axa1)maxmaxh(1),h(2)max0,3a此時h(x)max當(dāng)2時,即a4,(x2axa1)maxh(1)0,(x2axa1)maxh(1)0.此時h(x)max0.綜上:h(x)max