(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十八 不等式選講講義 理(重點(diǎn)生含解析)(選修4-5)
-
資源ID:106934080
資源大?。?span id="hqghahj" class="font-tahoma">167.50KB
全文頁數(shù):12頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十八 不等式選講講義 理(重點(diǎn)生含解析)(選修4-5)
(通用版)2022年高考數(shù)學(xué)二輪復(fù)習(xí) 第一部分 專題十八 不等式選講講義 理(重點(diǎn)生,含解析)(選修4-5)卷卷卷2018含絕對值不等式的解法及絕對值不等式恒成立問題含絕對值不等式的解法及絕對值不等式恒成立問題含絕對值函數(shù)的圖象與絕對值不等式恒成立問題2017含絕對值不等式的解法、求參數(shù)的取值范圍基本不等式的應(yīng)用、一些常用的變形及證明不等式的方法含絕對值不等式的解法、函數(shù)最值的求解2016含絕對值不等式的解法、分段函數(shù)的圖象及應(yīng)用含絕對值不等式的解法、比較法證明不等式及應(yīng)用含絕對值不等式的解法、絕對值不等式的性質(zhì)縱向把握趨勢考題主要涉及絕對值不等式的解法及絕對值不等式的恒成立問題、由不等式的解集求參問題預(yù)計2019年仍以考查絕對值不等式的解法為主,同時兼顧最值或恒成立問題的考查考題涉及絕對值不等式的解法、絕對值不等式的恒成立問題以及不等式的證明,難度適中預(yù)計2019年會考查含絕對值不等式的解法、不等式的證明問題考題涉及絕對值不等式的解法、絕對值不等式的恒成立問題、函數(shù)最值的求解,難度適中預(yù)計2019年仍會考查絕對值不等式的解法,同時要關(guān)注不等式的證明問題橫向把握重點(diǎn)1.不等式選講是高考的選考內(nèi)容之一,考查的重點(diǎn)是不等式的證明、絕對值不等式的解法等,命題的熱點(diǎn)是絕對值不等式的求解,以及絕對值不等式與函數(shù)的綜合問題的求解2.此部分命題形式單一、穩(wěn)定,難度中等,備考本部分內(nèi)容時應(yīng)注意分類討論思想的應(yīng)用.含絕對值不等式的解法類題通法含絕對值的不等式的解法(1)|f (x)|>a(a>0)f (x)>a或f (x)<a;(2)|f (x)|<a(a>0)a<f (x)<a;(3)|xa|xb|c(或c)(c>0),|xa|xb|c(或c)(c>0)型不等式,可通過零點(diǎn)分區(qū)間法或利用絕對值的幾何意義進(jìn)行求解零點(diǎn)分區(qū)間法求解絕對值不等式的一般步驟:()令每個絕對值符號的代數(shù)式為零,并求出相應(yīng)的根;()將這些根按從小到大排列,把實數(shù)集分為若干個區(qū)間;()由所分區(qū)間去掉絕對值符號得若干個不等式,解這些不等式,求出解集;()取各個不等式解集的并集就是原不等式的解集利用絕對值的幾何意義求解絕對值不等式的方法:由于|xa|xb|與|xa|xb|分別表示數(shù)軸上與x對應(yīng)的點(diǎn)到a,b對應(yīng)的點(diǎn)的距離之和與距離之差,因此對形如|xa|xb|c(c>0)或|xa|xb|c(c>0)的不等式,利用絕對值的幾何意義求解更直觀應(yīng)用通關(guān)1(2018·全國卷)已知f (x)|x1|ax1|.(1)當(dāng)a1時,求不等式f (x)>1的解集;(2)若x(0,1)時不等式f (x)>x成立,求a的取值范圍解:(1)當(dāng)a1時,f (x)|x1|x1|,即f (x)故不等式f (x)>1的解集為.(2)當(dāng)x(0,1)時|x1|ax1|>x成立等價于當(dāng)x(0,1)時|ax1|<1成立若a0,則當(dāng)x(0,1)時,|ax1|1;若a>0,則|ax1|<1的解集為,所以1,故0<a2.綜上,a的取值范圍為(0,22(2018·合肥質(zhì)檢)已知函數(shù)f (x)|2x1|.(1)解關(guān)于x的不等式f (x)f (x1)1;(2)若關(guān)于x的不等式f (x)<mf (x1)的解集不是空集,求m的取值范圍解:(1)f (x)f (x1)1|2x1|2x1|1,則或或解得x或x<,即x,所以原不等式的解集為.(2)由條件知,不等式|2x1|2x1|<m有解,則m>(|2x1|2x1|)min即可由于|2x1|2x1|12x|2x1|12x(2x1)|2,當(dāng)且僅當(dāng)(12x)(2x1)0,即x時等號成立,故m>2.所以m的取值范圍是(2,)不等式的證明由題知法1含有絕對值的不等式的性質(zhì)|a|b|a±b|a|b|.2算術(shù)幾何平均不等式定理1:設(shè)a,bR,則a2b22ab.當(dāng)且僅當(dāng)ab時,等號成立定理2:如果a,b為正數(shù),則,當(dāng)且僅當(dāng)ab時,等號成立定理3:如果a,b,c為正數(shù),則,當(dāng)且僅當(dāng)abc時,等號成立定理4:(一般形式的算術(shù)幾何平均不等式)如果a1,a2,an為n個正數(shù),則,當(dāng)且僅當(dāng)a1a2an時,等號成立(2018·沈陽質(zhì)監(jiān))已知a>0,b>0,函數(shù)f (x)|xa|xb|.(1)當(dāng)a1,b1時,解關(guān)于x的不等式f (x)>1;(2)若函數(shù)f (x)的最大值為2,求證:2.解(1)當(dāng)a1,b1時,f (x)|x1|x1|當(dāng)x1時,f (x)2>1,不等式恒成立,此時不等式的解集為x|x1;當(dāng)1x<1時,f (x)2x>1,所以x>,此時不等式的解集為;當(dāng)x<1時,f (x)2>1,不等式不成立,此時無解綜上所述,不等式f (x)>1的解集為.(2)證明:法一:由絕對值三角不等式可得|xa|xb|ab|,a>0,b>0,ab2,(ab)2,當(dāng)且僅當(dāng)ab1時,等號成立法二:a>0,b>0,a<0<b,函數(shù)f (x)|xa|xb|x(a)|xb|結(jié)合圖象易得函數(shù)f (x)的最大值為ab,ab2.(ab)2,當(dāng)且僅當(dāng)ab1時,等號成立類題通法證明不等式的方法和技巧(1)如果已知條件與待證明的結(jié)論直接聯(lián)系不明顯,可考慮用分析法;如果待證的命題以“至少”“至多”等方式給出或是否定性命題、唯一性命題,則考慮用反證法(2)在必要的情況下,可能還需要使用換元法、構(gòu)造法等技巧簡化對問題的表述和證明尤其是對含絕對值不等式的解法或證明,其簡化的基本思路是化去絕對值號,轉(zhuǎn)化為常見的不等式(組)求解多以絕對值的幾何意義或“找零點(diǎn)、分區(qū)間、逐個解、并起來”為簡化策略,而絕對值三角不等式,往往作為不等式放縮的依據(jù)應(yīng)用通關(guān)1(2018·長春質(zhì)檢)設(shè)不等式|x1|x1|<2的解集為A.(1)求集合A;(2)若a,b,cA,求證:>1.解:(1)由已知,令f (x)|x1|x1|由|f (x)|<2得1<x<1,即Ax|1<x<1(2)證明:要證>1,只需證|1abc|>|abc|,即證1a2b2c2>a2b2c2,即證1a2b2>c2(1a2b2),即證(1a2b2)(1c2)>0,由a,b,cA,得1<ab<1,c2<1,所以(1a2b2)(1c2)>0恒成立綜上,>1.2(2018·陜西質(zhì)檢)已知函數(shù)f (x)|2x1|x1|.(1)解不等式f (x)3;(2)記函數(shù)g(x)f (x)|x1|的值域為M,若tM,求證:t213t.解:(1)依題意,得f (x)f (x)3或或解得1x1,即不等式f (x)3的解集為x|1x1(2)證明:g(x)f (x)|x1|2x1|2x2|2x12x2|3,當(dāng)且僅當(dāng)(2x1)(2x2)0時取等號,M3,)原不等式等價于t23t1,t3,),t23t0,t23t11,又1,t23t1,t213t.含絕對值不等式的恒成立問題由題知法(2018·鄭州第一次質(zhì)量預(yù)測)設(shè)函數(shù)f (x)|x3|,g(x)|2x1|.(1)解不等式f (x)<g(x);(2)若2f (x)g(x)>ax4對任意的實數(shù)x恒成立,求a的取值范圍解(1)由已知,可得|x3|<|2x1|,即|x3|2<|2x1|2,3x210x8>0,解得x<或x>4.故所求不等式的解集為(4,)(2)由已知,設(shè)h(x)2f (x)g(x)2|x3|2x1|當(dāng)x3時,只需4x5>ax4恒成立,即ax<4x9恒成立,x3<0,a>4恒成立,a>max,a>1;當(dāng)3<x<時,只需7>ax4恒成立,即ax3<0恒成立,只需1a6;當(dāng)x時,只需4x5>ax4恒成立,即ax<4x1恒成立x>0,a<4恒成立4>4,且x時,44,a4.綜上,a的取值范圍是(1,4類題通法絕對值不等式的成立問題的求解模型(1)分離參數(shù):根據(jù)不等式將參數(shù)分離化為af (x)或af (x)形式(2)轉(zhuǎn)化最值:f (x)>a恒成立f (x)min>a;f (x)<a恒成立f (x)max<a;f (x)>a有解f (x)max>a;f (x)<a有解f (x)min<a;f (x)>a無解f (x)maxa;f (x)<a無解f (x)mina.(3)求最值:利用基本不等式或絕對值不等式求最值(4)得結(jié)論應(yīng)用通關(guān)1(2018·南寧模擬)已知函數(shù)f (x)|2x1|2x3|,g(x)|x1|xa|.(1)求f (x)1的解集;(2)若對任意的tR,sR,都有g(shù)(s)f (t)求a的取值范圍解:(1)因為函數(shù)f (x)|2x1|2x3|,故f (x)1,等價于|2x1|2x3|1,等價于或或無解,解得x,解得x>.所以不等式的解集為.(2)若對任意的tR,sR,都有g(shù)(s)f (t),可得g(x)minf (x)max.函數(shù)f (x)|2x1|2x3|2x1(2x3)|4,f (x)max4.g(x)|x1|xa|x1(xa)|a1|,故g(x)min|a1|.|a1|4,a14或a14,解得a3或a5.故a的取值范圍為(,53,)2(2019屆高三·洛陽第一次聯(lián)考)已知函數(shù)f (x)|x12a|xa2|,aR,g(x)x22x4.(1)若f (2a21)>4|a1|,求實數(shù)a的取值范圍;(2)若存在實數(shù)x,y,使f (x)g(y)0,求實數(shù)a的取值范圍解:(1)f (2a21)>4|a1|,|2a22a|a21|>4|a1|,|a1|(2|a|a1|4)>0,|2a|a1|>4且a1.若a1,則2aa1>4,a<;若1<a<0,則2aa1>4,a<3,此時無解;若a0且a1,則2aa1>4,a>1.綜上所述,a的取值范圍為(1,)(2)g(x)(x1)252 51,顯然可取等號,g(x)min1.于是,若存在實數(shù)x,y,使f (x)g(y)0,只需f (x)min1.又f (x)|x12a|xa2|(x12a)(xa2)|(a1)2,(a1)21,1a11,0a2,故實數(shù)a的取值范圍為0,2專題跟蹤檢測(對應(yīng)配套卷P209)1(2018·全國卷)設(shè)函數(shù)f (x)5|xa|x2|.(1)當(dāng)a1時,求不等式f (x)0的解集;(2)若f (x)1,求a的取值范圍解:(1)當(dāng)a1時,f (x)當(dāng)x<1時,由2x40,解得2x<1;當(dāng)1x2時,顯然滿足題意;當(dāng)x>2時,由2x60,解得2<x3,故f (x)0的解集為x|2x3(2)f (x)1等價于|xa|x2|4.而|xa|x2|a2|,且當(dāng)x2時等號成立故f (x)1等價于|a2|4.由|a2|4可得a6或a2.所以a的取值范圍是(,62,)2(2018·蘭州模擬)設(shè)函數(shù)f (x)|x3|,g(x)|x2|.(1)解不等式f (x)g(x)<2;(2)對于實數(shù)x,y,若f (x)1,g(y)1,證明:|x2y1|3.解:(1)解不等式|x3|x2|<2.當(dāng)x<2時,原不等式可化為3x2x<2,解得x>.所以<x<2.當(dāng)2x3時,原不等式可化為3xx2<2,解得1<2.所以2x3.當(dāng)x>3時,原不等式可化為x3x2<2,解得x<.所以3<x<.由可知,不等式的解集為.(2)證明:因為f (x)1,g(y)1,即|x3|1,|y2|1,所以|x2y1|(x3)2(y2)|x3|2|y2|123.當(dāng)且僅當(dāng)或時等號成立3(2018·開封模擬)已知函數(shù)f (x)|xm|,m<0.(1)當(dāng)m1時,求解不等式f (x)f (x)2x;(2)若不等式f (x)f (2x)<1的解集非空,求m的取值范圍解:(1)當(dāng)m1時,f (x)|x1|,f (x)|x1|,設(shè)F(x)|x1|x1|G(x)2x,由F(x)G(x),解得x2或x0,所以不等式f (x)f (x)2x的解集為x|x2或x0(2)f (x)f (2x)|xm|2xm|,m<0.設(shè)g(x)f (x)f (2x),當(dāng)xm時,g(x)mxm2x2m3x,則g(x)m;當(dāng)m<x<時,g(x)xmm2xx,則<g(x)<m;當(dāng)x時,g(x)xm2xm3x2m,則g(x).所以g(x)的值域為,若不等式f (x)f (2x)<1的解集非空,只需1>,解得m>2,又m<0,所以m的取值范圍是(2,0)4(2018·全國卷)設(shè)函數(shù)f (x)|2x1|x1|.(1)畫出yf (x)的圖象;(2)當(dāng)x0,)時,f (x)axb,求ab的最小值解:(1)f (x)yf (x)的圖象如圖所示(2)由(1)知,yf (x)的圖象與y軸交點(diǎn)的縱坐標(biāo)為2,且各部分所在直線斜率的最大值為3,故當(dāng)且僅當(dāng)a3且b2時,f (x)axb在0,)成立,因此ab的最小值為5.5已知函數(shù)f (x)|x1|.(1)求不等式f (x)<|2x1|1的解集M;(2)設(shè)a,bM,證明:f (ab)>f (a)f (b)解:(1)當(dāng)x1時,原不等式可化為x1<2x2,解得x<1;當(dāng)1<x<時,原不等式可化為x1<2x2,解得x<1,此時原不等式無解;當(dāng)x時,原不等式可化為x1<2x,解得x>1.綜上,Mx|x<1或x>1(2)證明:因為f (a)f (b)|a1|b1|a1(b1)|ab|,所以要證f (ab)>f (a)f (b),只需證|ab1|>|ab|,即證|ab1|2>|ab|2,即證a2b22ab1>a22abb2,即證a2b2a2b21>0,即證(a21)(b21)>0.因為a,bM,所以a2>1,b2>1,所以(a21)(b21)>0成立,所以原不等式成立6(2018·廣東五市聯(lián)考)已知函數(shù)f (x)|xa|(a0)(1)若不等式f (x)f (xm)1恒成立,求實數(shù)m的最大值;(2)當(dāng)a<時,函數(shù)g(x)f (x)|2x1|有零點(diǎn),求實數(shù)a的取值范圍解:(1)f (xm)|xma|.f (x)f (xm)|xa|xma|m|,當(dāng)且僅當(dāng)|m|1時,f (x)f (xm)1恒成立,1m1,即實數(shù)m的最大值為1.(2)當(dāng)a<時,g(x)f (x)|2x1|xa|2x1|g(x)minga0,或解得a<0,實數(shù)a的取值范圍是.7(2018·鄭州模擬)已知函數(shù)f (x)|2x1|ax5|(0a5)(1)當(dāng)a1時,求不等式f (x)9的解集;(2)若函數(shù)yf (x)的最小值為4,求實數(shù)a的值解:(1)當(dāng)a1時,f (x)|2x1|x5|所以f (x)9或或解得x1或x5,即所求不等式的解集為(,15,)(2)0<a<5,1,則f (x)當(dāng)x時,f (x)單調(diào)遞減,當(dāng)x>時,f (x)單調(diào)遞增,f (x)的最小值在上取得在上,當(dāng)0a2時,f (x)單調(diào)遞增,當(dāng)2a5時,f (x)單調(diào)遞減,或解得a2.8(2018·成都模擬)已知函數(shù)f (x)|x2|k|x1|,kR.(1)當(dāng)k1時,若不等式f (x)<4的解集為x|x1<x<x2,求x1x2的值;(2)當(dāng)xR時,若關(guān)于x的不等式f (x)k恒成立,求k的最大值解:(1)由題意,得|x2|x1|<4.當(dāng)x>2時,原不等式可化為2x<5,2<x<;當(dāng)1x2時,原不等式可化為3<4,1x2.當(dāng)x<1時,原不等式可化為2x<3,<x<1;綜上,原不等式的解集為,即x1,x2.x1x21.(2)由題意,得|x2|k|x1|k.當(dāng)x2時,即不等式3kk成立,k0.當(dāng)x2或x0時,|x1|1,不等式|x2|k|x1|k恒成立當(dāng)2x1時,原不等式可化為2xkxkk,可得k1,k3.當(dāng)1<x<0時,原不等式可化為2xkxkk,可得k1,k<3.綜上,可得0k3,即k的最大值為3.