歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項(xiàng)突破9 等差、等比數(shù)列的基本問題 理

  • 資源ID:110236885       資源大小:198KB        全文頁(yè)數(shù):9頁(yè)
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請(qǐng)知曉。

2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項(xiàng)突破9 等差、等比數(shù)列的基本問題 理

必考問題9等差、等比數(shù)列的基本問題1(2020·遼寧)在等差數(shù)列an中,已知a4a816,則該數(shù)列前11項(xiàng)和S11()A58 B88 C143 D176答案: B利用等差數(shù)列的性質(zhì)及求和公式求解因?yàn)閍n是等差數(shù)列,所以a4a82a616a68,則該數(shù)列的前11項(xiàng)和為S1111a688.2(2020·新課標(biāo)全國(guó))已知an為等比數(shù)列,a4a72,a5a68,則a1a10()A7 B5 C5 D7答案:D設(shè)數(shù)列an的公比為q,由得或所以或所以或所以a1a107.3(2020·福建)等差數(shù)列an中,a1a510,a47,則數(shù)列an的公差為()A1 B2 C3 D4答案:B在等差數(shù)列an中,a1a510,2a310,a35,又a47,所求公差為2.4(2020·浙江)設(shè)公比為q(q0)的等比數(shù)列an的前n項(xiàng)和為Sn.若S23a22,S43a42,則q_.解析S4S2a3a43(a4a2),a2(qq2)3a2(q21),q1(舍去)或q.答案本部分在高考中常以選擇題和填空題的形式出現(xiàn),考查這兩種數(shù)列的概念、基本性質(zhì)、簡(jiǎn)單運(yùn)算、通項(xiàng)公式、求和公式等,屬于中檔題;以解答題出現(xiàn)時(shí),各省市的要求不太一樣,有的考查等差、等比數(shù)列的通項(xiàng)公式與求和等知識(shí),屬于中檔題;有的與函數(shù)、不等式、解析幾何等知識(shí)結(jié)合考查,難度較大(1)深刻理解兩種數(shù)列的基本概念和性質(zhì),熟練掌握常用的方法和技能;掌握等差數(shù)列和等比數(shù)列的判定、證明方法,這類問題經(jīng)常出現(xiàn)在以遞推數(shù)列為背景的試題的第(1)問中(2)熟練掌握等差數(shù)列和等比數(shù)列的性質(zhì),并會(huì)靈活應(yīng)用,這是迅速、準(zhǔn)確地進(jìn)行計(jì)算的關(guān)鍵.必備知識(shí)等差數(shù)列的有關(guān)公式與性質(zhì)(1)an1and(nN*,d為常數(shù))(2)ana1(n1)d.(3)Snna1d.(4)2anan1an1(nN*,n2)(5)anam(nm)d(n,mN*);若mnpq,則amanapaq(m,n,p,qN*);等差數(shù)列an的前n項(xiàng)和為Sn,則Sm,S2mSm,S3mS2m,成等差數(shù)列等比數(shù)列的有關(guān)公式與性質(zhì)(1)q(nN*,q為非零常數(shù))(2)ana1qn1.(3)Sn(q1)(4)aan1an1(nN*,n2)(5)anamqnm;若mnpq,則am·anap·aq;等比數(shù)列an(公比q1)的前n項(xiàng)和為Sn,則Sm,S2mSm,S3mS2m,也成等比數(shù)列必備方法1運(yùn)用方程的思想解等差(比)數(shù)列是常見題型,解決此類問題需要抓住基本量a1、d(或q),掌握好設(shè)未知數(shù)、列出方程、解方程三個(gè)環(huán)節(jié),常通過“設(shè)而不求,整體代入”來簡(jiǎn)化運(yùn)算2深刻理解等差(比)數(shù)列的定義,能正確使用定義和等差(比)數(shù)列的性質(zhì)是學(xué)好本章的關(guān)鍵解題時(shí)應(yīng)從基礎(chǔ)處著筆,首先要熟練掌握這兩種基本數(shù)列的相關(guān)性質(zhì)及公式,然后要熟悉它們的變形使用,善用技巧,減少運(yùn)算量,既準(zhǔn)又快地解決問題3等差、等比數(shù)列的判定與證明方法:(1)定義法:an1and(d為常數(shù))an是等差數(shù)列;q(q為非零常數(shù))an是等比數(shù)列;(2)利用中項(xiàng)法:2an1anan2(nN*)an是等差數(shù)列;aan·an2(nN*)an是等比數(shù)列(注意等比數(shù)列的an0,q0);(3)通項(xiàng)公式法:anpnq(p,q為常數(shù))an是等差數(shù)列;ancqn(c,q為非零常數(shù))an是等比數(shù)列;(4)前n項(xiàng)和公式法:SnAn2Bn(A,B為常數(shù))an是等差數(shù)列;Snmqnm(m為常數(shù),q0)an是等比數(shù)列;(5)若判斷一個(gè)數(shù)列既不是等差數(shù)列又不是等比數(shù)列,只需用a1,a2,a3驗(yàn)證即可等差數(shù)列和等比數(shù)列在公式和性質(zhì)上有許多相似性,是高考必考內(nèi)容,著重考查等差、等比數(shù)列的基本運(yùn)算、基本技能和基本思想方法,題型不僅有選擇題、填空題、還有解答題,題目難度中等【例1】 (2020·江西)已知兩個(gè)等比數(shù)列an、bn滿足a1a(a>0),b1a11,b2a22,b3a33.(1)若a1,求數(shù)列an的通項(xiàng)公式;(2)若數(shù)列an唯一,求a的值審題視點(diǎn) 聽課記錄審題視點(diǎn) (1)利用b1、b2、b3等比求解;(2)利用(1)問的解題思路,結(jié)合方程的相關(guān)知識(shí)可求解解(1)設(shè)an的公比為q,則b11a2,b22aq2q,b33aq23q2.由b1,b2,b3成等比數(shù)列得(2q)22(3q2),即q24q20,解得q12,q22,所以an的通項(xiàng)公式為an(2)n1或an(2)n1.(2)設(shè)an的公比為q,則由(2aq)2(1a)(3aq2),得aq24aq3a10.(*)由a>0得,4a24a>0,故方程(*)有兩個(gè)不同的實(shí)根,由an唯一,知方程(*)必有一根為0,代入(*)得a. 關(guān)于等差(等比)數(shù)列的基本運(yùn)算,一般通過其通項(xiàng)公式和前n項(xiàng)和公式構(gòu)造關(guān)于a1和d(或q)的方程或方程組解決,如果在求解過程中能夠靈活運(yùn)用等差(等比)數(shù)列的性質(zhì),不僅可以快速獲解,而且有助于加深對(duì)等差(等比)數(shù)列問題的認(rèn)識(shí)【突破訓(xùn)練1】 (2020·廣東改編)等差數(shù)列an前9項(xiàng)的和等于前4項(xiàng)的和若a11,aka40,則k()A10 B12 C15 D20答案: A設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,則S9S40,即a5a6a7a8a90,5a70,故a70,而aka40,故k10.高考對(duì)該內(nèi)容的考查主要是等差、等比數(shù)列的定義,常與遞推數(shù)列相結(jié)合考查常作為數(shù)列解答題的第一問,為求數(shù)列的通項(xiàng)公式做準(zhǔn)備,屬于中檔題【例2】 設(shè)數(shù)列an的前n項(xiàng)和為Sn,已知a11,Sn14an2.(1)設(shè)bnan12an,證明:數(shù)列bn是等比數(shù)列;(2)求數(shù)列an的通項(xiàng)公式審題視點(diǎn) 聽課記錄審題視點(diǎn) (1)先利用an1Sn1Sn將Sn14an2轉(zhuǎn)化為關(guān)于an的遞推關(guān)系式,再利用bnan12an的形式及遞推關(guān)系式構(gòu)造新數(shù)列來求證(2)借助(1)問結(jié)果,通過構(gòu)造新數(shù)列的方式求通項(xiàng)(1)證明由a11,及Sn14an2,有a1a24a12,a23a125,b1a22a13,由Sn14an2,則當(dāng)n2時(shí),有Sn4an12.得an14an4an1.an12an2(an2an1)又bnan12an,bn2bn1,bn是首項(xiàng)b13,公比為2的等比數(shù)列,(2)解由(1)可得bnan12an3·2n1,.數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,(n1)×n,所以an(3n1)·2n2. 判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列的首選方法是根據(jù)定義去判斷,其次是由等差中項(xiàng)或等比中項(xiàng)的性質(zhì)去判斷【突破訓(xùn)練2】 在數(shù)列an中,a11,an12an2n.(1)設(shè)bn.證明:數(shù)列bn是等差數(shù)列;(2)求數(shù)列an的前n項(xiàng)和Sn.(1)證明an12an2n,1.即有bn1bn1,所以bn是以1為首項(xiàng),1為公差的等差數(shù)列(2)解由(1)知bnn,從而ann·2n1.Sn1×202×213×22(n1)×2n2n×2n1,2Sn1×212×223×23(n1)×2n1n×2n.兩式相減得,Snn×2n2021222n1n×2n2n1(n1)2n1.從近幾年的考題看,對(duì)于等差與等比數(shù)列的綜合考查也頻頻出現(xiàn)考查的目的在于測(cè)試考生靈活運(yùn)用知識(shí)的能力,這個(gè)“靈活”就集中在“轉(zhuǎn)化”的水平上【例3】 (2020·石家莊二模)已知等比數(shù)列an的前n項(xiàng)和為Sn,a12,S1、2S2、3S3成等差數(shù)列(1)求數(shù)列an的通項(xiàng)公式;(2)數(shù)列bnan是首項(xiàng)為6,公差為2的等差數(shù)列,求數(shù)列bn的前n項(xiàng)和審題視點(diǎn) 聽課記錄審題視點(diǎn) (1)列出關(guān)于公比q的方程求q;(2)先求出bn后,再根據(jù)公式求和解(1)由已知4S2S13S3,4(a1a1q)a13a1(1qq2),3q2q0,q0(舍),或q,an2·n1.(2)由題意得:bnan2n8,bnan2n82n12n8.設(shè)數(shù)列bn的前n項(xiàng)和為Tn,Tn3n(n7)n27n3. (1)在等差數(shù)列與等比數(shù)列的綜合問題中,特別要注意它們的區(qū)別,避免用錯(cuò)公式(2)方程思想的應(yīng)用往往是破題的關(guān)鍵【突破訓(xùn)練3】 數(shù)列an為等差數(shù)列,an為正整數(shù),其前n項(xiàng)和為Sn,數(shù)列bn為等比數(shù)列,且a13,b11,數(shù)列ban是公比為64的等比數(shù)列,b2S264.(1)求an,bn;(2)求證:.(1)解設(shè)an的公差為d,bn的公比為q,則d為正整數(shù),an3(n1)d,bnqn1.依題意有由(6d)q64知q為正有理數(shù),故d為6的因子1,2,3,6之一,解得d2,q8,故an32(n1)2n1,bn8n1.(2)證明Sn35(2n1)n(n2),.遞推數(shù)列及其應(yīng)用遞推數(shù)列問題一直是高考命題的特點(diǎn),遞推數(shù)列在求數(shù)列的通項(xiàng)、求和及其它應(yīng)用中往往起至關(guān)重要的紐帶作用,是解決后面問題的基礎(chǔ)和臺(tái)階,此類題目需根據(jù)不同的題設(shè)條件,抓住數(shù)列遞推關(guān)系式的特點(diǎn),選擇恰當(dāng)?shù)那蠼夥椒ā臼纠?(2020·湖北)已知數(shù)列an的前n項(xiàng)和為Sn,且滿足:a1a(a0),an1rSn(nN*,rR,r1)(1)求數(shù)列an的通項(xiàng)公式;(2)若存在kN*,使得Sk1,Sk,Sk2成等差數(shù)列,試判斷:對(duì)于任意的mN*,且m2,am1,am,am2是否成等差數(shù)列,并證明你的結(jié)論滿分解答(1)由已知an1rSn,可得an2rSn1,兩式相減,得an2an1r(Sn1Sn)ran1,即an2(r1)an1.(2分)又a2ra1ra,所以,當(dāng)r0時(shí),數(shù)列an為:a,0,0,;(3分)當(dāng)r0,r1時(shí),由已知a0,所以an0(nN*),于是由an2(r1)an1,可得r1(nN*),a2,a3,an,成等比數(shù)列,當(dāng)n2時(shí),anr(r1)n2a.(5分)綜上,數(shù)列an的通項(xiàng)公式為an(6分)(2)對(duì)于任意的mN*,且m2,am1,am,am2成等差數(shù)列,證明如下:當(dāng)r0時(shí),由(1)知,an對(duì)于任意的mN*,且m2,am1,am,am2成等差數(shù)列(8分)當(dāng)r0,r1時(shí),Sk2Skak1ak2,Sk1Skak1,若存在kN*,使得Sk1,Sk,Sk2成等差數(shù)列,則Sk1Sk22Sk,2Sk2ak1ak22Sk,即ak22ak1.(10分)由(1)知,a2,a3,am,的公比r12,于是對(duì)于任意的mN*,且m2,am12am,從而am24am,am1am22am,即am1,am,am2成等差數(shù)列(12分)綜上,對(duì)于任意的mN*,且m2,am1,am,am2成等差數(shù)列(13分)老師叮嚀:本題是以an和Sn為先導(dǎo)的綜合問題,主要考查等差、等比數(shù)列的基礎(chǔ)知識(shí)以及處理遞推關(guān)系式的一般方法失分的原因有:第(1)問中漏掉r0的情況,導(dǎo)致結(jié)論寫為anr(r1)n2a;第(2)問中有的考生也漏掉r0的情況,很多考生不知將Sk1Sk22Sk轉(zhuǎn)化為ak1與ak2的關(guān)系式,從而證明受阻【試一試】 (2020·四川)已知數(shù)列an的前n項(xiàng)和為Sn,且a2anS2Sn對(duì)一切正整數(shù)n都成立(1)求a1,a2的值;(2)設(shè)a10,數(shù)列的前n項(xiàng)和為Tn.當(dāng)n為何值時(shí),Tn最大?并求出Tn的最大值解(1)取n1,得a2a1S2S12a1a2,取n2,得a2a12a2,由,得a2(a2a1)a2,(i)若a20,由知a10,(ii)若a20,由知a2a11.由、解得,a11,a22;或a11,a22.綜上可知a10,a20;或a11,a22;或a11,a22.(2)當(dāng)a10時(shí),由(1)知a11,a22.當(dāng)n2時(shí),有(2)anS2Sn,(2)an1S2Sn1,所以(1)an(2)an1,即anan1(n2),所以ana1()n1(1)·()n1.令bnlg,則bn1lg()n11(n1)lg 2lg,所以數(shù)列bn是單調(diào)遞減的等差數(shù)列(公差為lg 2),從而b1b2b7lglg 10,當(dāng)n8時(shí),bnb8lglg 10,故n7時(shí),Tn取得最大值,且Tn的最大值為T77lg 2.

注意事項(xiàng)

本文(2020屆高三數(shù)學(xué)二輪復(fù)習(xí) 必考問題專項(xiàng)突破9 等差、等比數(shù)列的基本問題 理)為本站會(huì)員(艷***)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!