(廣東專用)2020高考數(shù)學總復(fù)習第五章第三節(jié) 課時跟蹤訓練 理
-
資源ID:112032143
資源大?。?span id="kiux136" class="font-tahoma">34KB
全文頁數(shù):3頁
- 資源格式: DOC
下載積分:10積分
快捷下載
會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
(廣東專用)2020高考數(shù)學總復(fù)習第五章第三節(jié) 課時跟蹤訓練 理
課時知能訓練一、選擇題1(2020·東莞模擬)設(shè)Sn為等比數(shù)列an的前n項和,8a2a50,則()A5B8C8D15【解析】8a2a50,8a1qa1q4,q38,即q2.1q25.【答案】A2在等比數(shù)列an中,a11,公比|q|1,若ama1a2a3a4a5,則m()A9 B10 C11 D12【解析】ama1a2a3a4a5q·q2·q3·q4q10a1q10,m11.【答案】C3設(shè)an是由正數(shù)組成的等比數(shù)列,Sn為其前n項和已知a2a41,S37,則S5()A. B.C. D.【解析】設(shè)等比數(shù)列an的公比為q,由題意知即解得S5.【答案】B4已知an是首項為1的等比數(shù)列,Sn是an的前n項和,且9S3S6,則數(shù)列的前5項和為()A.或5 B.或5C. D.【解析】設(shè)等比數(shù)列的公比為q,當公比q1時,由a11得,9S39×327,而S66,故不合題意當公比q1時,由9S3S6及a11,得:9×,解得q2.所以數(shù)列的前5項和為1.【答案】C5設(shè)等比數(shù)列an的前n項和為Sn,若3,則()A2 B. C. D3【解析】S3,S6S3,S9S6成等比數(shù)列,由3,即S63S3知,S9S64S3,S97S3,.【答案】B二、填空題6(2020·珠海模擬)已知等比數(shù)列an的前三項依次為a1,a1,a4,則an_.【解析】由(a1)2(a1)(a4)得a5,因此等比數(shù)列an的首項為4,公比q.an4×()n1.【答案】4×()n17等比數(shù)列an的公比q0,已知a21,an2an16an,則an的前4項和S4_.【解析】an2an1anq2anq6an,q2q60,又q0,q2,由a2a1q1得a1,S4.【答案】8數(shù)列an滿足a1,a2a1,a3a2,anan1是首項為1,公比為2的等比數(shù)列,那么an_.【解析】ana1(a2a1)(a3a2)(anan1)2n1.【答案】2n1三、解答題9(2020·中山質(zhì)檢)已知等比數(shù)列an的前n項和為Sn2nc.(1)求c的值并求數(shù)列an的通項公式;(2)若bnSn2n1,求數(shù)列bn的前n項和Tn.【解】(1)當n1時,a1S12c,當n2時,anSnSn12n2n12n1,an數(shù)列an為等比數(shù)列,a12c1,c1.數(shù)列an的通項公式an2n1.(2)bnSn2n12n2n,Tn(2222n)2(12n)2(2n1)n(n1)2n12n2n.10已知數(shù)列滿足a11,an12an1(nN*)(1)求證數(shù)列an1是等比數(shù)列;(2)求an的通項公式及an的前n項和Sn.【解】(1)由an12an1得an112(an1)又a110,所以2.數(shù)列an1為公比是2的等比數(shù)列(2)由(1)知an1(a11)qn1,即an(a11)qn112·2n112n1.故Sna1a2an(2222n)nn2n1n2.11(2020·湖北高考)成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列bn中的b3、b4、b5.(1)求數(shù)列bn的通項公式;(2)數(shù)列bn的前n項和為Sn,求證:數(shù)列Sn是等比數(shù)列【解】(1)設(shè)等差數(shù)列的三個正數(shù)分別為ad,a,ad.依題意得adaad15,解得a5.所以bn中的b3,b4,b5依次為7d,10,18d.依題意,有(7d)(18d)100,解得d2或d13(舍去)故bn的第3項為5,公比為2.由b3b1·22,即5b1·22,解得b1.所以bn是以為首項,2為公比的等比數(shù)列,則數(shù)列bn的通項公式bn·2n15·2n3.(2)Sn5·2n2,即Sn5·2n2所以S1,2.因此數(shù)列Sn是以為首項,公比為2的等比數(shù)列