《分類加法計數(shù)原理與分步乘法計數(shù)原理》課件.ppt
,一、復(fù)習(xí)回顧:,兩個計數(shù)原理的內(nèi)容是什么?解決兩個計數(shù)原理問題需要注意什么問題?有哪些技巧?,練習(xí):,三個比賽項目,六人報名參加。)每人參加一項有多少種不同的方法?)每項人,且每人至多參加一項,有多少種不同的方法?)每項人,每人參加的項數(shù)不限,有多少種不同的方法?,例1用0,1,2,3,4,5這六個數(shù)字,(1)可以組成多少個各位數(shù)字不允許重復(fù)的三位的奇數(shù)?(2)可以組成多少個各位數(shù)字不重復(fù)的小于1000的自然數(shù)?(3)可以組成多少個大于3000,小于5421且各位數(shù)字不允許重復(fù)的四位數(shù)?,升華發(fā)展,一、排數(shù)字問題,1、將數(shù)字1,2,3,4,填入標(biāo)號為1,2,3,4的四個方格里,每格填一個數(shù)字,則每個格子的標(biāo)號與所填的數(shù)字均不同的填法有_種,引申:,號方格里可填,三個數(shù)字,有種填法。號方格填好后,再填與號方格內(nèi)數(shù)字相同的號的方格,又有種填法,其余兩個方格只有種填法。所以共有3*3*1=9種不同的方法。,二、映射個數(shù)問題:,例2設(shè)A=a,b,c,d,e,f,B=x,y,z,從A到B共有多少種不同的映射?,三、染色問題:,例3有n種不同顏色為下列兩塊廣告牌著色,要求在四個區(qū)域中相鄰(有公共邊界)區(qū)域中不用同一種顏色.(1)若n=6,為(1)著色時共有多少種方法?(2)若為(2)著色時共有120種不同方法,求n(1)(2),、如圖,要給地圖A、B、C、D四個區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?,解:按地圖A、B、C、D四個區(qū)域依次分四步完成,第一步,m1=3種,第二步,m2=2種,第三步,m3=1種,第四步,m4=1種,所以根據(jù)乘法原理,得到不同的涂色方案種數(shù)共有N=3211=6種。,、如圖,要給地圖A、B、C、D四個區(qū)域分別涂上3種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同的顏色,不同的涂色方案有多少種?,若用2色、4色、5色等,結(jié)果又怎樣呢?,答:它們的涂色方案種數(shù)分別是0、4322=48、5433=180種等。,思考:,分析:如圖,A、B、C三個區(qū)域兩兩相鄰,A與D不相鄰,因此A、B、C三個區(qū)域的顏色兩兩不同,A、D兩個區(qū)域可以同色,也可以不同色,但D與B、C不同色。由此可見我們需根據(jù)A與D同色與不同色分成兩大類。,解:先分成兩類:第一類,D與A不同色,可分成四步完成。第一步涂A有5種方法,第二步涂B有4種方法;第三步涂C有3種方法;第四步涂D有2種方法。根據(jù)分步計數(shù)原理,共有5432120種方法。,根據(jù)分類計數(shù)原理,共有120+60180種方法。,第二類,A、D同色,分三步完成,第一步涂A和D有5種方法,第二步涂B有4種方法;第三步涂C有3種方法。根據(jù)分步計數(shù)原理,共有54360種方法。,、某城市在中心廣場建造一個花圃,花圃分為6個部分(如右圖)現(xiàn)要栽種4種不同顏色的花,每部分栽種一種且相鄰部分不能栽種同樣顏色的花,不同的栽種方法有_種.(以數(shù)字作答),(1)與同色,則也同色或也同色,所以共有N1=43221=48種;,所以,共有N=N1+N2+N3=48+48+24=120種.,(2)與同色,則或同色,所以共有N2=43221=48種;,(3)與且與同色,則共N3=4321=24種,解法一:從題意來看6部分種4種顏色的花,又從圖形看知必有2組同顏色的花,從同顏色的花入手分類求,6、將種作物種植在如圖所示的塊試驗田里,每塊種植一種作物且相鄰的試驗田不能種植同一種作物,不同的種植方法共有種(以數(shù)字作答),42,5、如圖,是5個相同的正方形,用紅、黃、藍(lán)、白、黑5種顏色涂這些正方形,使每個正方形涂一種顏色,且相鄰的正方形涂不同的顏色。如果顏色可反復(fù)使用,那么共有多少種涂色方法?,四、子集問題,規(guī)律:n元集合的不同子集有個。,例:集合A=a,b,c,d,e,它的子集個數(shù)為,真子集個數(shù)為,非空子集個數(shù)為,非空真子集個數(shù)為。,五、綜合問題:,例4若直線方程ax+by=0中的a,b可以從0,1,2,3,4這五個數(shù)字中任取兩個不同的數(shù)字,則方程所表示的不同的直線共有多少條?,、75600有多少個正約數(shù)?有多少個奇約數(shù)?,解:由于75600=2433527,75600的每個約數(shù)都可以寫成的形式,其中,于是,要確定75600的一個約數(shù),可分四步完成,即i,j,k,l分別在各自的范圍內(nèi)任取一個值,這樣i有5種取法,j有4種取法,k有3種取法,l有2種取法,根據(jù)分步計數(shù)原理得約數(shù)的個數(shù)為5432=120個.,解:從總體上看,如,螞蟻從頂點A爬到頂點C1有三類方法,從局部上看每類又需兩步完成,所以,第一類,m1=12=2條第二類,m2=12=2條第三類,m3=12=2條所以,根據(jù)加法原理,從頂點A到頂點C1最近路線共有N=2+2+2=6條。,3.一螞蟻沿著長方體的棱,從的一個頂點爬到相對的另一個頂點的最近路線共有多少條?,4、如果把兩條異面直線看成“一對”,那么六棱錐的棱所在的12條直線中,異面直線共有()對A.12B.24C.36D.48,B,5.如圖,從甲地到乙地有2條路可通,從乙地到丙地有3條路可通;從甲地到丁地有4條路可通,從丁地到丙地有2條路可通。從甲地到丙地共有多少種不同的走法?,甲地,乙地,丙地,丁地,解:從總體上看,由甲到丙有兩類不同的走法,第一類,由甲經(jīng)乙去丙,又需分兩步,所以m1=23=6種不同的走法;第二類,由甲經(jīng)丁去丙,也需分兩步,所以m2=42=8種不同的走法;所以從甲地到丙地共有N=6+8=14種不同的走法。,