歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOCX文檔下載  

2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題04 立體幾何 文(含解析)

  • 資源ID:122802028       資源大小:3.33MB        全文頁(yè)數(shù):23頁(yè)
  • 資源格式: DOCX        下載積分:26積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要26積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題04 立體幾何 文(含解析)

專題04 立體幾何1【2019年高考全國(guó)卷文數(shù)】設(shè),為兩個(gè)平面,則的充要條件是A內(nèi)有無(wú)數(shù)條直線與平行B內(nèi)有兩條相交直線與平行C,平行于同一條直線D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B【名師點(diǎn)睛】本題考查了空間兩個(gè)平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷面面平行的判定問(wèn)題要緊扣面面平行判定定理,最容易犯的錯(cuò)誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯(cuò)誤2【2019年高考全國(guó)卷文數(shù)】如圖,點(diǎn)N為正方形ABCD的中心,ECD為正三角形,平面ECD平面ABCD,M是線段ED的中點(diǎn),則ABM=EN,且直線BM,EN是相交直線BBMEN,且直線BM,EN是相交直線CBM=EN,且直線BM,EN是異面直線DBMEN,且直線BM,EN是異面直線【答案】B【解析】如圖所示,作于,連接,BD,易得直線BM,EN是三角形EBD的中線,是相交直線.過(guò)作于,連接,平面平面,平面,平面,平面,與均為直角三角形設(shè)正方形邊長(zhǎng)為2,易知,故選B【名師點(diǎn)睛】本題考查空間想象能力和計(jì)算能力,解答本題的關(guān)鍵是構(gòu)造直角三角形.解答本題時(shí),先利用垂直關(guān)系,再結(jié)合勾股定理進(jìn)而解決問(wèn)題3【2019年高考浙江卷】祖暅?zhǔn)俏覈?guó)南北朝時(shí)代的偉大科學(xué)家,他提出的“冪勢(shì)既同,則積不容異”稱為祖暅原理,利用該原理可以得到柱體的體積公式V柱體=Sh,其中S是柱體的底面積,h是柱體的高若某柱體的三視圖如圖所示(單位:cm),則該柱體的體積(單位:cm3)是A158B162C182D324【答案】B【解析】由三視圖得該棱柱的高為6,底面可以看作是由兩個(gè)直角梯形組合而成的,其中一個(gè)上底為4,下底為6,高為3,另一個(gè)的上底為2,下底為6,高為3,則該棱柱的體積為.故選B.【名師點(diǎn)睛】本題首先根據(jù)三視圖,還原得到幾何體棱柱,根據(jù)題目給定的數(shù)據(jù),計(jì)算幾何體的體積,常規(guī)題目.難度不大,注重了基礎(chǔ)知識(shí)、視圖用圖能力、基本計(jì)算能力的考查.易錯(cuò)點(diǎn)有二,一是不能正確還原幾何體;二是計(jì)算體積有誤.為避免出錯(cuò),應(yīng)注重多觀察、細(xì)心算.4【2019年高考浙江卷】設(shè)三棱錐VABC的底面是正三角形,側(cè)棱長(zhǎng)均相等,P是棱VA上的點(diǎn)(不含端點(diǎn))記直線PB與直線AC所成的角為,直線PB與平面ABC所成的角為,二面角PACB的平面角為,則A<,<B<,< C<,<D<,<【答案】B【解析】如圖,為中點(diǎn),連接VG,在底面的投影為,則在底面的投影在線段上,過(guò)作垂直于于E,連接PE,BD,易得,過(guò)作交于,連接BF,過(guò)作,交于,則,結(jié)合PFB,BDH,PDB均為直角三角形,可得,即;在RtPED中,即,綜上所述,答案為B.【名師點(diǎn)睛】本題以三棱錐為載體,綜合考查異面直線所成的角、直線與平面所成的角、二面角的概念,以及各種角的計(jì)算.解答的基本方法是通過(guò)明確各種角,應(yīng)用三角函數(shù)知識(shí)求解,而后比較大小.而充分利用圖形特征,則可事倍功半.常規(guī)解法下易出現(xiàn)的錯(cuò)誤有,不能正確作圖得出各種角,未能想到利用“特殊位置法”,尋求簡(jiǎn)便解法.5【2019年高考全國(guó)卷文數(shù)】已知ACB=90°,P為平面ABC外一點(diǎn),PC=2,點(diǎn)P到ACB兩邊AC,BC的距離均為,那么P到平面ABC的距離為_【答案】【解析】作分別垂直于,平面,連接,由題意可知,平面,又平面,又易知,為的平分線,又,【名師點(diǎn)睛】本題主要考查學(xué)生空間想象能力,合理畫圖成為關(guān)鍵,準(zhǔn)確找到在底面上的射影,使用線面垂直定理,得到垂直關(guān)系,利用勾股定理解決注意畫圖視角選擇不當(dāng),線面垂直定理使用不夠靈活,難以發(fā)現(xiàn)垂直關(guān)系,問(wèn)題則很難解決,將幾何體擺放成正常視角,是立體幾何問(wèn)題解決的有效手段,幾何關(guān)系利于觀察,解題事半功倍6【2019年高考全國(guó)卷文數(shù)】中國(guó)有悠久的金石文化,印信是金石文化的代表之一印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1則該半正多面體共有_個(gè)面,其棱長(zhǎng)為_(本題第一空2分,第二空3分)【答案】26,【解析】由圖可知第一層(包括上底面)與第三層(包括下底面)各有9個(gè)面,計(jì)18個(gè)面,第二層共有8個(gè)面,所以該半正多面體共有個(gè)面如圖,設(shè)該半正多面體的棱長(zhǎng)為,則,延長(zhǎng)與的延長(zhǎng)線交于點(diǎn),延長(zhǎng)交正方體的棱于,由半正多面體對(duì)稱性可知,為等腰直角三角形,即該半正多面體的棱長(zhǎng)為【名師點(diǎn)睛】本題立意新穎,空間想象能力要求高,物體位置還原是關(guān)鍵,遇到新題別慌亂,題目其實(shí)很簡(jiǎn)單,穩(wěn)中求勝是關(guān)鍵立體幾何平面化,無(wú)論多難都不怕,強(qiáng)大空間想象能力,快速還原圖形7【2019年高考全國(guó)卷文數(shù)】學(xué)生到工廠勞動(dòng)實(shí)踐,利用3D打印技術(shù)制作模型如圖,該模型為長(zhǎng)方體挖去四棱錐OEFGH后所得的幾何體,其中O為長(zhǎng)方體的中心,E,F(xiàn),G,H分別為所在棱的中點(diǎn),3D打印所用原料密度為0.9 g/cm3,不考慮打印損耗,制作該模型所需原料的質(zhì)量為_g.【答案】118.8【解析】由題意得,四棱錐OEFGH的高為3cm,又長(zhǎng)方體的體積為,所以該模型體積為,其質(zhì)量為【名師點(diǎn)睛】本題考查幾何體的體積問(wèn)題,理解題中信息聯(lián)系幾何體的體積和質(zhì)量關(guān)系,從而利用公式求解根據(jù)題意可知模型的體積為長(zhǎng)方體體積與四棱錐體積之差進(jìn)而求得模型的體積,再求出模型的質(zhì)量即可.8【2019年高考北京卷文數(shù)】某幾何體是由一個(gè)正方體去掉一個(gè)四棱柱所得,其三視圖如圖所示如果網(wǎng)格紙上小正方形的邊長(zhǎng)為1,那么該幾何體的體積為_【答案】40【解析】如圖所示,在棱長(zhǎng)為4的正方體中,三視圖對(duì)應(yīng)的幾何體為正方體去掉棱柱之后余下的幾何體,則幾何體的體積.【名師點(diǎn)睛】本題首先根據(jù)三視圖,還原得到幾何體,再根據(jù)題目給定的數(shù)據(jù),計(jì)算幾何體的體積.屬于中等題.(1)求解以三視圖為載體的空間幾何體的體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)體積公式求解;(2)若所給幾何體的體積不能直接利用公式得出,則常用等積法、分割法、補(bǔ)形法等方法進(jìn)行求解9【2019年高考北京卷文數(shù)】已知l,m是平面外的兩條不同直線給出下列三個(gè)論斷:lm;m;l以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫出一個(gè)正確的命題:_【答案】如果l,m,則lm.【解析】將所給論斷,分別作為條件、結(jié)論,得到如下三個(gè)命題:(1)如果l,m,則lm,正確;(2)如果l,lm,則m,不正確,有可能m在平面內(nèi);(3)如果lm,m,則l,不正確,有可能l與斜交、l.故答案為:如果l,m,則lm.【名師點(diǎn)睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.將所給論斷,分別作為條件、結(jié)論加以分析即可.10【2019年高考天津卷文數(shù)】已知四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),另一個(gè)底面的圓心為四棱錐底面的中心,則該圓柱的體積為_.【答案】【解析】由題意,四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)均為,借助勾股定理,可知四棱錐的高為.若圓柱的一個(gè)底面的圓周經(jīng)過(guò)四棱錐四條側(cè)棱的中點(diǎn),一個(gè)底面的圓心為四棱錐底面的中心,故圓柱的高為,圓柱的底面半徑為,故圓柱的體積為.【名師點(diǎn)睛】根據(jù)棱錐的結(jié)構(gòu)特點(diǎn),確定所求的圓柱的高和底面半徑.注意本題中圓柱的底面半徑是棱錐底面對(duì)角線長(zhǎng)度的一半、不是底邊棱長(zhǎng)的一半.11【2019年高考江蘇卷】如圖,長(zhǎng)方體的體積是120,E為的中點(diǎn),則三棱錐EBCD的體積是 .【答案】10【解析】因?yàn)殚L(zhǎng)方體的體積為120,所以,因?yàn)闉榈闹悬c(diǎn),所以,由長(zhǎng)方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【名師點(diǎn)睛】本題蘊(yùn)含“整體和局部”的對(duì)立統(tǒng)一規(guī)律.在幾何體面積或體積的計(jì)算問(wèn)題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補(bǔ)”的方法解題.由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.12【2019年高考全國(guó)卷文數(shù)】如圖,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60°,E,M,N分別是BC,BB1,A1D的中點(diǎn).(1)證明:MN平面C1DE;(2)求點(diǎn)C到平面C1DE的距離【答案】(1)見解析;(2).【解析】(1)連結(jié).因?yàn)镸,E分別為的中點(diǎn),所以,且.又因?yàn)镹為的中點(diǎn),所以.由題設(shè)知,可得,故,因此四邊形MNDE為平行四邊形,.又平面,所以MN平面.(2)過(guò)C作C1E的垂線,垂足為H.由已知可得,所以DE平面,故DECH.從而CH平面,故CH的長(zhǎng)即為C到平面的距離,由已知可得CE=1,C1C=4,所以,故.從而點(diǎn)C到平面的距離為.【名師點(diǎn)睛】該題考查的是有關(guān)立體幾何的問(wèn)題,涉及的知識(shí)點(diǎn)有線面平行的判定,點(diǎn)到平面的距離的求解,在解題的過(guò)程中,注意要熟記線面平行的判定定理的內(nèi)容,注意平行線的尋找思路,再者就是利用線面垂直找到距離問(wèn)題,當(dāng)然也可以用等積法進(jìn)行求解.13【2019年高考全國(guó)卷文數(shù)】如圖,長(zhǎng)方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1(1)證明:BE平面EB1C1;(2)若AE=A1E,AB=3,求四棱錐的體積【答案】(1)見詳解;(2)18.【解析】(1)由已知得B1C1平面ABB1A1,BE平面ABB1A1,故又,所以BE平面(2)由(1)知BEB1=90°.由題設(shè)知RtABERtA1B1E,所以,故AE=AB=3,.作,垂足為F,則EF平面,且所以,四棱錐的體積【名師點(diǎn)睛】本題主要考查線面垂直的判定,以及四棱錐的體積的求解,熟記線面垂直的判定定理,以及四棱錐的體積公式即可,屬于基礎(chǔ)題型.14【2019年高考全國(guó)卷文數(shù)】圖1是由矩形ADEB,ABC和菱形BFGC組成的一個(gè)平面圖形,其中AB=1,BE=BF=2,F(xiàn)BC=60°將其沿AB,BC折起使得BE與BF重合,連結(jié)DG,如圖2(1)證明:圖2中的A,C,G,D四點(diǎn)共面,且平面ABC平面BCGE;(2)求圖2中的四邊形ACGD的面積.【答案】(1)見解析;(2)4.【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG確定一個(gè)平面,從而A,C,G,D四點(diǎn)共面由已知得ABBE,ABBC,故AB平面BCGE又因?yàn)锳B平面ABC,所以平面ABC平面BCGE(2)取CG的中點(diǎn)M,連結(jié)EM,DM.因?yàn)锳BDE,AB平面BCGE,所以DE平面BCGE,故DECG.由已知,四邊形BCGE是菱形,且EBC=60°得EMCG,故CG平面DEM因此DMCG在DEM中,DE=1,EM=,故DM=2所以四邊形ACGD的面積為4【名師點(diǎn)睛】本題是很新穎的立體幾何考題,首先是多面體折疊問(wèn)題,考查考生在折疊過(guò)程中哪些量是不變的,再者折疊后的多面體不是直棱柱,突出考查考生的空間想象能力.15【2019年高考北京卷文數(shù)】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn)(1)求證:BD平面PAC;(2)若ABC=60°,求證:平面PAB平面PAE;(3)棱PB上是否存在點(diǎn)F,使得CF平面PAE?說(shuō)明理由【答案】(1)見解析;(2)見解析;(3)存在,理由見解析.【解析】(1)因?yàn)槠矫鍭BCD,所以又因?yàn)榈酌鍭BCD為菱形,所以所以平面PAC(2)因?yàn)镻A平面ABCD,平面ABCD,所以PAAE因?yàn)榈酌鍭BCD為菱形,ABC=60°,且E為CD的中點(diǎn),所以AECD所以ABAE所以AE平面PAB所以平面PAB平面PAE(3)棱PB上存在點(diǎn)F,使得CF平面PAE取F為PB的中點(diǎn),取G為PA的中點(diǎn),連結(jié)CF,F(xiàn)G,EG則FGAB,且FG=AB因?yàn)榈酌鍭BCD為菱形,且E為CD的中點(diǎn),所以CEAB,且CE=AB所以FGCE,且FG=CE所以四邊形CEGF為平行四邊形所以CFEG因?yàn)镃F平面PAE,EG平面PAE,所以CF平面PAE【名師點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理,立體幾何中的探索問(wèn)題等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16【2019年高考天津卷文數(shù)】如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,.(1)設(shè)G,H分別為PB,AC的中點(diǎn),求證:平面;(2)求證:平面;(3)求直線AD與平面所成角的正弦值.【答案】(1)見解析;(2)見解析;(3)【解析】(1)連接,易知,.又由,故.又因?yàn)槠矫鍼AD,平面PAD,所以平面PAD.(2)取棱PC的中點(diǎn)N,連接DN.依題意,得DNPC,又因?yàn)槠矫嫫矫鍼CD,平面平面,所以平面PAC,又平面PAC,故.又已知,所以平面PCD.(3)連接AN,由(2)中平面PAC,可知為直線與平面PAC所成的角,因?yàn)闉榈冗吶切?,CD=2且N為PC的中點(diǎn),所以.又,在中,.所以,直線AD與平面PAC所成角的正弦值為.【名師點(diǎn)睛】本小題主要考查直線與平面平行、直線與平面垂直、平面與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí).考查空間想象能力和推理論證能力.17【2019年高考江蘇卷】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC求證:(1)A1B1平面DEC1;(2)BEC1E【答案】(1)見解析;(2)見解析.【解析】(1)因?yàn)镈,E分別為BC,AC的中點(diǎn),所以EDAB.在直三棱柱ABCA1B1C1中,ABA1B1,所以A1B1ED.又因?yàn)镋D平面DEC1,A1B1平面DEC1,所以A1B1平面DEC1.(2)因?yàn)锳B=BC,E為AC的中點(diǎn),所以BEAC.因?yàn)槿庵鵄BCA1B1C1是直棱柱,所以CC1平面ABC.又因?yàn)锽E平面ABC,所以CC1BE.因?yàn)镃1C平面A1ACC1,AC平面A1ACC1,C1CAC=C,所以BE平面A1ACC1.因?yàn)镃1E平面A1ACC1,所以BEC1E.【名師點(diǎn)睛】本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識(shí),考查空間想象能力和推理論證能力.18【2019年高考浙江卷】如圖,已知三棱柱,平面平面,,分別是AC,A1B1的中點(diǎn).(1)證明:;(2)求直線EF與平面A1BC所成角的余弦值.【答案】(1)見解析;(2)【解析】方法一:(1)連接A1E,因?yàn)锳1A=A1C,E是AC的中點(diǎn),所以A1EAC又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC,則A1EBC又因?yàn)锳1FAB,ABC=90°,故BCA1F所以BC平面A1EF因此EFBC(2)取BC中點(diǎn)G,連接EG,GF,則EGFA1是平行四邊形由于A1E平面ABC,故A1EEG,所以平行四邊形EGFA1為矩形由(1)得BC平面EGFA1,則平面A1BC平面EGFA1,所以EF在平面A1BC上的射影在直線A1G上連接A1G交EF于O,則EOG是直線EF與平面A1BC所成的角(或其補(bǔ)角)不妨設(shè)AC=4,則在RtA1EG中,A1E=2,EG=.由于O為A1G的中點(diǎn),故,所以因此,直線EF與平面A1BC所成角的余弦值是方法二:(1)連接A1E,因?yàn)锳1A=A1C,E是AC的中點(diǎn),所以A1EAC.又平面A1ACC1平面ABC,A1E平面A1ACC1,平面A1ACC1平面ABC=AC,所以,A1E平面ABC如圖,以點(diǎn)E為原點(diǎn),分別以射線EC,EA1為y,z軸的正半軸,建立空間直角坐標(biāo)系Exyz不妨設(shè)AC=4,則A1(0,0,2),B(,1,0),C(0,2,0)因此,由得(2)設(shè)直線EF與平面A1BC所成角為由(1)可得設(shè)平面A1BC的法向量為n,由,得,取n,故,因此,直線EF與平面A1BC所成的角的余弦值為【名師點(diǎn)睛】本題主要考查空間點(diǎn)、線、面位置關(guān)系,直線與平面所成的角等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和運(yùn)算求解能力.19【云南省昆明市2019屆高三高考5月模擬數(shù)學(xué)試題】已知直線平面,直線平面,若,則下列結(jié)論正確的是A或BCD【答案】A【解析】對(duì)于A,直線平面,則或,A正確;對(duì)于B,直線平面,直線平面,且,則或與相交或與異面,B錯(cuò)誤;對(duì)于C,直線平面,且,則或與相交或或,C錯(cuò)誤;對(duì)于D,直線平面,直線平面,且,則或與相交或與異面,D錯(cuò)誤故選A【名師點(diǎn)睛】本題考查了空間平面與平面關(guān)系的判定及直線與直線關(guān)系的確定問(wèn)題,也考查了幾何符號(hào)語(yǔ)言的應(yīng)用問(wèn)題,是基礎(chǔ)題20【陜西省2019屆高三年級(jí)第三次聯(lián)考數(shù)學(xué)試題】已知三棱柱的側(cè)棱與底面邊長(zhǎng)都相等,在底面上的射影為的中點(diǎn),則異面直線與所成的角的余弦值為ABCD【答案】B【解析】如圖,設(shè)的中點(diǎn)為,連接、,易知即為異面直線與所成的角(或其補(bǔ)角).設(shè)三棱柱的側(cè)棱與底面邊長(zhǎng)均為1,則,由余弦定理,得.故應(yīng)選B.【名師點(diǎn)睛】本題主要考查了異面直線所成角的求解,通過(guò)平移找到所成角是解這類問(wèn)題的關(guān)鍵,若平移不好作,可采用建系,利用空間向量的運(yùn)算求解,屬于基礎(chǔ)題.解答本題時(shí),易知即為異面直線與所成的角(或其補(bǔ)角),進(jìn)而通過(guò)計(jì)算的各邊長(zhǎng),利用余弦定理求解即可.21【四川省宜賓市2019屆高三第三次診斷性考試數(shù)學(xué)試題】如圖,邊長(zhǎng)為2的正方形中,分別是的中點(diǎn),現(xiàn)在沿及把這個(gè)正方形折成一個(gè)四面體,使三點(diǎn)重合,重合后的點(diǎn)記為,則四面體的高為ABCD1【答案】B【解析】如圖,由題意可知兩兩垂直,平面,設(shè)P到平面的距離為h,又,故,故選B.【名師點(diǎn)睛】本題考查了平面幾何的折疊問(wèn)題,空間幾何體的體積計(jì)算,屬于中檔題折疊后,利用即可求得P到平面的距離22【廣東省深圳市高級(jí)中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)試題】在三棱錐中,平面平面,是邊長(zhǎng)為6的等邊三角形,是以為斜邊的等腰直角三角形,則該三棱錐外接球的表面積為_【答案】【解析】如圖,在等邊三角形中,取的中點(diǎn),設(shè)等邊三角形的中心為,連接PF,CF,OP.由,得,是以為斜邊的等腰角三角形,,又平面平面,平面,則為棱錐的外接球球心,外接球半徑,該三棱錐外接球的表面積為,故答案為.【名師點(diǎn)睛】本題主要考查四面體外接球表面積,考查空間想象能力,是中檔題. 要求外接球的表面積和體積,關(guān)鍵是求出球的半徑.求外接球半徑的常見方法有:若三條棱兩兩垂直,則用(為三條棱的長(zhǎng));若面(),則(為外接圓半徑);可以轉(zhuǎn)化為長(zhǎng)方體的外接球;特殊幾何體可以直接找出球心和半徑.23【河南省洛陽(yáng)市2019年高三第三次統(tǒng)一考試(5月)數(shù)學(xué)試題】在四棱柱中,四邊形是平行四邊形,平面,為中點(diǎn).(1)求證:平面平面;(2)求多面體的體積.【答案】(1)見解析;(2).【解析】(1)在中,由余弦定理得,.平面平面,.又,平面.又平面,平面平面.(2)設(shè)的中點(diǎn)分別為,連接,分別為的中點(diǎn),多面體為三棱柱.平面,為三棱柱的高.又,三棱柱的體積為.在四棱錐中,.底面.,四棱錐的體積為,多面體的體積為.【名師點(diǎn)睛】(1)根據(jù)余弦定理求,底面滿足勾股定理,所以,又可證明,所以平面,即證明面面垂直;(2)取的中點(diǎn),分別連接,這樣多面體可分割為三棱柱和三棱錐,再分別求體積即可. 23

注意事項(xiàng)

本文(2019年高考數(shù)學(xué) 高考題和高考模擬題分項(xiàng)版匯編 專題04 立體幾何 文(含解析))為本站會(huì)員(Sc****h)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!