2018-2019學(xué)年高中數(shù)學(xué) 第三章 三角函數(shù)章末復(fù)習(xí)提升課件 湘教版必修2.ppt
第3章,三角函數(shù),1,知識網(wǎng)絡(luò) 系統(tǒng)盤點,提煉主干,2,要點歸納 整合要點,詮釋疑點,3,題型研修 突破重點,提升能力,章末復(fù)習(xí)提升,1.三角函數(shù)的概念 重點掌握以下兩方面內(nèi)容: 理解任意角的概念和弧度的意義,能正確迅速進(jìn)行弧度與角度的換算. 掌握任意的角的正弦、余弦和正切的定義,能正確快速利用三角函數(shù)值在各個象限的符號解題,能求三角函數(shù)的定義域和一些簡單三角函數(shù)的值域.,2.同角三角函數(shù)的基本關(guān)系式 能用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡、求值和三角恒等式的證明;能逆用公式sin2 cos21巧妙解題.,3.誘導(dǎo)公式 能用公式一至公式四將任意角的三角函數(shù)化為銳角三角函數(shù),利用“奇變偶不變,符號看象限”牢記所有誘導(dǎo)公式. 善于將同角三角函數(shù)的基本關(guān)系式和誘導(dǎo)公式結(jié)合起來使用,通過這些公式進(jìn)行化簡、求值,達(dá)到培養(yǎng)推理運算能力和邏輯思維能力提高的目的.,4.三角函數(shù)的圖象與性質(zhì),5.三角函數(shù)的圖象與性質(zhì)的應(yīng)用 (1)重點掌握“五點法”,會進(jìn)行三角函數(shù)圖象的變換,能從圖象中獲取盡可能多的信息,如周期、半個周期、四分之一個周期等,如軸對稱、中心對稱等,如最高點、最低點與對稱中心之間位置關(guān)系等.能從三角函數(shù)的圖象歸納出函數(shù)的性質(zhì).,(2)牢固掌握三角函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性和對稱性.在運用三角函數(shù)性質(zhì)解題時,要善于運用數(shù)形結(jié)合思想、分類討論思想、化歸轉(zhuǎn)化思想將綜合性較強(qiáng)的試題完整準(zhǔn)確地進(jìn)行解答.,題型一 任意角的三角函數(shù)的定義及三角函數(shù)線 掌握任意角的正弦、余弦、正切的定義及三角函數(shù)線,能夠利用三角函數(shù)的定義求三角函數(shù)值,利用三角函數(shù)線判斷三角函數(shù)的符號,借助三角函數(shù)線求三角函數(shù)的定義域.,如圖,結(jié)合三角函數(shù)線知:,(2)求f(x)的值域及取最大值時x的值. 解 1sin x1,112sin x3, 12sin x0,012sin x3,,2tan 4(1tan ), 解得tan 2.,(sin 3cos )(cos sin ) 4sin cos sin2 3cos2,整理得25sin2 5sin 120. 是三角形內(nèi)角,sin 0,,sin 0,cos 0,sin cos 0,,題型三 三角函數(shù)的圖象及變換 三角函數(shù)的圖象是研究三角函數(shù)性質(zhì)的基礎(chǔ),又是三角函數(shù)性質(zhì)的具體體現(xiàn).在平時的考查中,主要體現(xiàn)在三角函數(shù)圖象的變換和解析式的確定,以及通過對圖象的描繪、觀察來討論函數(shù)的有關(guān)性質(zhì).具體要求:,(3)由已知函數(shù)圖象求函數(shù)yAsin (x)(A>0,>0)的解析式時,常用的解題方法是待定系數(shù)法,由圖中的最大值或最小值確定A,由周期確定,由適合解析式的點的坐標(biāo)來確定,但由圖象求得的yAsin (x)(A>0,>0)的解析式一般不是唯一的,只有限定的取值范圍,才能得出唯一的解,否則的值不確定,解析式也就不唯一.,解 函數(shù)f(x)的最大值為3, A13,即A2,,最小正周期T,2,,跟蹤演練3 已知函數(shù)f(x)的部分圖象如圖所示,則f(x)的解析式可能為( ),答案 C,題型四 三角函數(shù)的性質(zhì) 三角函數(shù)的性質(zhì),重點應(yīng)掌握ysin x,ycos x,ytan x的定義域、值域、單調(diào)性、奇偶性、對稱性等有關(guān)性質(zhì),在此基礎(chǔ)上掌握函數(shù)yAsin(x),yAcos(x)及yAtan(x)的相關(guān)性質(zhì).在研究其相關(guān)性質(zhì)時,將x看成一個整體,利用整體代換思想解題是常見的技巧.,例4 f(x)是定義在R上的偶函數(shù),對任意實數(shù)x滿足f(x2)f(x),且f(x)在3,2上單調(diào)遞減,而,是銳角三角形的兩個內(nèi)角,求證:f(sin )>f(cos ). 證明 f(x2)f(x),yf(x)的周期為2. f(x)在1,0與3,2上的單調(diào)性相同. f(x)在1,0上單調(diào)遞減.f(x)是偶函數(shù), f(x)在0,1上的單調(diào)性與1,0上的單調(diào)性相反.,f(x)在0,1上單調(diào)遞增. ,是銳角三角形的兩個內(nèi)角,,即sin >cos . 由,得f(sin )>f(cos ).,又5f(x)1, b5,3ab1, 因此a2,b5.,解 由(1)得a2,b5,,又由lg g(x)0得g(x)1,,課堂小結(jié) 三角函數(shù)的性質(zhì)是本章復(fù)習(xí)的重點,在復(fù)習(xí)時,要充分利用數(shù)形結(jié)合思想把圖象與性質(zhì)結(jié)合起來,即利用圖象的直觀性得到函數(shù)的性質(zhì),或由單位圓中三角函數(shù)線表示的三角函數(shù)值來獲得函數(shù)的性質(zhì),同時也能利用函數(shù)的性質(zhì)來描述函數(shù)的圖象,這樣既有利于掌握函數(shù)的圖象與性質(zhì),又能熟練運用數(shù)形結(jié)合的思想方法.,