歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

2011-2012年高考數(shù)學(xué) 真題分類匯編 圓錐曲線與方程(含解析)

  • 資源ID:147630932       資源大小:2.22MB        全文頁(yè)數(shù):40頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 微信開(kāi)放平臺(tái)登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 支付寶    微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

2011-2012年高考數(shù)學(xué) 真題分類匯編 圓錐曲線與方程(含解析)

圓錐曲線與方程1.(2012·浙江高考卷·T8·5分)如圖,F(xiàn)1,F2分別是雙曲線C:(a,b0)的在左、右焦點(diǎn),B是虛軸的端點(diǎn),直線F1B與C的兩條漸近線分別交于P,Q兩點(diǎn),線段PQ的垂直平分線與x軸交于點(diǎn)M。若|MF2|=|F1F2| ,則C的離心率是A. B C. D. 【解析】如圖:|OB|b,|O F1|ckPQ,kMN直線PQ為:y(xc),兩條漸近線為:yx由,得:Q(,);由,得:P(,)直線MN為:y(x),令y0得:xM又|MF2|F1F2|2c,3cxM,解之得:,即e【答案】B【點(diǎn)評(píng)】本題主要考察雙曲線的標(biāo)準(zhǔn)方程和簡(jiǎn)單的幾何性質(zhì),求離心率一般要先列出關(guān)于2.(2012·四川高考卷·T8·5分)已知拋物線關(guān)于軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)。若點(diǎn)到該拋物線焦點(diǎn)的距離為,則( )A、 B、 C、 D、答案B 解析設(shè)拋物線方程為y2=2px(p>0),則焦點(diǎn)坐標(biāo)為(),準(zhǔn)線方程為x=, 點(diǎn)評(píng)本題旨在考查拋物線的定義: |MF|=d,(M為拋物線上任意一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),d為點(diǎn)M到準(zhǔn)線的距離).3.(2012·山東高考卷·T11·5分)已知雙曲線:的離心率為2.若拋物線的焦點(diǎn)到雙曲線的漸近線的距離為2,則拋物線的方程為 (A) (B) (C)(D)【答案】D【解析】雙曲線的一條漸近線為, 即,拋物線的焦點(diǎn)為,拋物線焦點(diǎn)到漸近線距離為,故而拋物線方程為.【點(diǎn)評(píng)】本題考查圓錐曲線的性質(zhì),點(diǎn)的直線的距離公式等解析幾何知識(shí),屬于知識(shí)的綜合考察.預(yù)測(cè)明年結(jié)合拋物線的概念與性質(zhì)考查.4.(2012·山東高考卷·T10·5分)已知橢圓C:的離心率為,雙曲線x²-y²1的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為【答案】D【解析】雙曲線x²-y²1的漸近線方程為,代入可得,則,又由可得,則,于是.橢圓方程為,答案應(yīng)選D.【點(diǎn)評(píng)】本題考察了雙曲線與橢圓的基本性質(zhì),屬于運(yùn)算能力的考察,求圓錐曲線方程的基本方法之一就是待定系數(shù)法,就是根據(jù)已知條件得到圓錐曲線方程中系數(shù)的方程或者方程組,通過(guò)解方程或者方程組求得系數(shù)值5.(2012·新課標(biāo)卷·T4·5分)設(shè)是橢圓E:的左、右焦點(diǎn),P為直線上一點(diǎn),是底角為的等腰三角形,則E的離心率為( )(A) (B) (C) (D)【答案】:COFFPM【解析】:由題意得(如圖所示), 在直角中, 又,且, 所以,故選C.【點(diǎn)評(píng)】:本題考查了圓錐曲線的幾何性質(zhì)離心率的計(jì)算,正確把握條件是解題的關(guān)鍵.6.(2012·新課標(biāo)卷·T8·5分)等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線的準(zhǔn)線交于A,B兩點(diǎn),則C的實(shí)軸長(zhǎng)為(A) (B) (C)4 (D)8【答案】:C【解析】:由題意得,設(shè)等軸雙曲線的方程為,又拋物線的準(zhǔn)線方程為. 代入雙曲線的方程得,所以, 解得,所以雙曲線的實(shí)軸長(zhǎng)為,故選C.【點(diǎn)評(píng)】:本題考查了等軸雙曲線與拋物線的相關(guān)知識(shí),計(jì)算相交弦長(zhǎng),確定圓錐曲線的幾何性質(zhì).7.(2012·湖南高考卷·T5·15分)已知雙曲線C :-=1的焦距為10 ,點(diǎn)P (2,1)在C 的漸近線上,則C的方程為A-=1 B.-=1 C.-=1 D.-=1w#ww.zz&step.【答案】A【解析】設(shè)雙曲線C :-=1的半焦距為,則.又C 的漸近線為,點(diǎn)P (2,1)在C 的漸近線上,即.又,C的方程為-=1.【點(diǎn)評(píng)】本題考查雙曲線的方程、雙曲線的漸近線方程等基礎(chǔ)知識(shí),考查了數(shù)形結(jié)合的思想和基本運(yùn)算能力,是近年來(lái)??碱}型.8.(2011年四川)在拋物線上取橫坐標(biāo)為,的兩點(diǎn),過(guò)這兩點(diǎn)引一條割線,有平行于該割線的一條直線同時(shí)與拋物線和圓相切,則拋物線頂點(diǎn)的坐標(biāo)為A B C D【答案】C【解析】由已知的割線的坐標(biāo),設(shè)直線方程為,則又9.(2011年陜西)設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為,則拋物線的方程是 A B C D【答案】B10.(2011年山東)已知雙曲線的兩條漸近線均和圓C:相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程為A B C D【答案】A11.(2011年全國(guó)新課標(biāo))已知直線l過(guò)雙曲線C的一個(gè)焦點(diǎn),且與C的對(duì)稱軸垂直,l與C交于A,B兩點(diǎn),為C的實(shí)軸長(zhǎng)的2倍,C的離心率為(A) (B) (C) 2 (D) 3【答案】B12.(2011年全國(guó)大綱)已知拋物線C:的焦點(diǎn)為F,直線與C交于A,B兩點(diǎn)則= A B C D【答案】D13.(2011年江西)若曲線:與曲線:有四個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是 A(,) B(,0)(0,) C, D(,)(,+)【答案】B14.(2011年湖南)設(shè)雙曲線的漸近線方程為,則的值為A4 B3 C2 D1【答案】C15.(2012·四川高考卷·T15·4分)橢圓的左焦點(diǎn)為,直線與橢圓相交于點(diǎn)、,當(dāng)?shù)闹荛L(zhǎng)最大時(shí),的面積是_。答案 解析根據(jù)橢圓定義知:4a=12, 得a=3 , 又點(diǎn)評(píng)本題考查對(duì)橢圓概念的掌握程度.突出展現(xiàn)高考前的復(fù)習(xí)要回歸課本的新課標(biāo)理念.16.(重慶理15)設(shè)圓C位于拋物線與直線x=3所圍成的封閉區(qū)域(包含邊界)內(nèi),則圓C的半徑能取到的最大值為_(kāi)【答案】17.(全國(guó)新課標(biāo)理14)(14) 在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為過(guò)點(diǎn)的直線l交C于A,B兩點(diǎn),且的周長(zhǎng)為16,那么C的方程為_(kāi)【答案】18.(2011年安徽)在平面直角坐標(biāo)系中,如果與都是整數(shù),就稱點(diǎn)為整點(diǎn),下列命題中正確的是_(寫出所有正確命題的編號(hào)). 存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過(guò)任何整點(diǎn)如果與都是無(wú)理數(shù),則直線不經(jīng)過(guò)任何整點(diǎn)直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過(guò)兩個(gè)不同的整點(diǎn)直線經(jīng)過(guò)無(wú)窮多個(gè)整點(diǎn)的充分必要條件是:與都是有理數(shù)存在恰經(jīng)過(guò)一個(gè)整點(diǎn)的直線【答案】,19.(2012·浙江高考卷·T21·15分)如圖,橢圓C:(ab0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分()求橢圓C的方程;() 求ABP的面積取最大時(shí)直線l的方程【解析】()由題:; (1)左焦點(diǎn)(c,0)到點(diǎn)P(2,1)的距離為: (2)由(1) (2)可解得:所求橢圓C的方程為:()易得直線OP的方程:yx,設(shè)A(xA,yA),B(xB,yB),R(x0,y0)其中y0x0A,B在橢圓上,設(shè)直線AB的方程為l:y(m0),代入橢圓:顯然m且m0由上又有:m,|AB|點(diǎn)P(2,1)到直線l的距離為:SABPd|AB|m2|,當(dāng)|m2|,即m3 or m0(舍去)時(shí),(SABP)max此時(shí)直線l的方程y【答案】 () ;() y【點(diǎn)評(píng)】該題綜合考察橢圓的概念標(biāo)準(zhǔn)方程、直線和橢圓(曲線與方程)的,此類問(wèn)題解決的方法是相通的,注意學(xué)習(xí).20.(2012·四川高考卷·T21·12分) 如圖,動(dòng)點(diǎn)到兩定點(diǎn)、構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為。()求軌跡的方程;()設(shè)直線與軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍。 解析(1)設(shè)M的坐標(biāo)為(x,y),顯然有x>0,.當(dāng)MBA=90°時(shí),點(diǎn)M的坐標(biāo)為(2,, ±3)當(dāng)MBA90°時(shí);x2.由MBA=2MAB,有tanMBA=,即化簡(jiǎn)得:3x2-y2-3=0,而又經(jīng)過(guò)(2,,±3)綜上可知,軌跡C的方程為3x2-y2-3=0(x>1) (II)由方程消去y,可得。(*)由題意,方程(*)有兩根且均在(1,+)內(nèi),設(shè)所以解得,m>1,且m2設(shè)Q、R的坐標(biāo)分別為,由有所以由m>1,且m2,有所以的取值范圍是點(diǎn)評(píng)本小題主要考察直線、雙曲線、軌跡方程的求法等基礎(chǔ)知識(shí),考察思維能力、運(yùn)算能力,考察函數(shù)、分類與整合等思想,并考察思維的嚴(yán)謹(jǐn)性。21.(2012·新課標(biāo)卷·T20·12分)設(shè)拋物線的交點(diǎn)為F,準(zhǔn)線為L(zhǎng),A為C上的一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交L于B,D兩點(diǎn).(I)若的面積為,求P的值及圓F的方程;(II)若A,B,F三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)m,n距離的比值.【命題意圖】:本試題考查了拋物線與圓的方程,以及兩個(gè)曲線的公共點(diǎn)處的切線的運(yùn)用,并在此基礎(chǔ)上求解點(diǎn)到直線的距離.【點(diǎn)評(píng)】:本題考查了拋物線與圓的結(jié)合點(diǎn),并且在第二問(wèn)中體現(xiàn)了分類討論的數(shù)學(xué)思想方法,對(duì)學(xué)生的深度思維有一定的考查.22.(2012·湖南高考卷·T21·13分) 在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.()求曲線C1的方程;()設(shè)P(x0,y0)(y0±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.【解析】()解法1 :設(shè)M的坐標(biāo)為,由已知得,易知圓上的點(diǎn)位于直線的右側(cè).于是,所以.化簡(jiǎn)得曲線的方程為.解法2 :由題設(shè)知,曲線上任意一點(diǎn)M到圓心的距離等于它到直線的距離,因此,曲線是以為焦點(diǎn),直線為準(zhǔn)線的拋物線,故其方程為.()當(dāng)點(diǎn)P在直線上運(yùn)動(dòng)時(shí),P的坐標(biāo)為,又,則過(guò)P且與圓相切得直線的斜率存在且不為0,每條切線都與拋物線有兩個(gè)交點(diǎn),切線方程為.于是整理得 設(shè)過(guò)P所作的兩條切線的斜率分別為,則是方程的兩個(gè)實(shí)根,故 由得 設(shè)四點(diǎn)A,B,C,D的縱坐標(biāo)分別為,則是方程的兩個(gè)實(shí)根,所以 同理可得 于是由,三式得.所以,當(dāng)P在直線上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值6400.【點(diǎn)評(píng)】本題考查曲線與方程、直線與曲線的位置關(guān)系,考查運(yùn)算能力,考查數(shù)形結(jié)合思想、函數(shù)與方程思想等數(shù)學(xué)思想方法.第一問(wèn)用直接法或定義法求出曲線的方程;第二問(wèn)設(shè)出切線方程,把直線與曲線方程聯(lián)立,由一元二次方程根與系數(shù)的關(guān)系得到四點(diǎn)縱坐標(biāo)之積為定值,體現(xiàn)“設(shè)而不求”思想.23.(2012·山東高考卷·T21·13分)如圖,橢圓的離心率為,直線和所圍成的矩形ABCD的面積為8.()求橢圓M的標(biāo)準(zhǔn)方程;() 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.【解析】(21)(I)矩形ABCD面積為8,即由解得:,橢圓M的標(biāo)準(zhǔn)方程是.(II),設(shè),則,由得.當(dāng)過(guò)點(diǎn)時(shí),當(dāng)過(guò)點(diǎn)時(shí),.當(dāng)時(shí),有,其中,由此知當(dāng),即時(shí),取得最大值.由對(duì)稱性,可知若,則當(dāng)時(shí),取得最大值.當(dāng)時(shí),由此知,當(dāng)時(shí),取得最大值.綜上可知,當(dāng)和0時(shí),取得最大值.一是點(diǎn)明本題體現(xiàn)了今年考綱中的哪一點(diǎn),二是本題對(duì)明年高考命題的指導(dǎo)意義.【點(diǎn)評(píng)】本題考查橢圓方程的求法以及直線與橢圓的位置關(guān)系問(wèn)題.解決圓錐曲線中最值、范圍問(wèn)題的基本思想是建立目標(biāo)函數(shù)和建立不等關(guān)系,根據(jù)目標(biāo)函數(shù)和不等式求最值、范圍,因此這類問(wèn)題的難點(diǎn),就是如何建立目標(biāo)函數(shù)和不等關(guān)系建立目標(biāo)函數(shù)或不等關(guān)系的關(guān)鍵是選用一個(gè)合適變量,其原則是這個(gè)變量能夠表達(dá)要解決的問(wèn)題,這個(gè)變量可以是直線的斜率、直線的截距、點(diǎn)的坐標(biāo)等,要根據(jù)問(wèn)題的實(shí)際情況靈活處理估計(jì)明年還會(huì)這樣考查.24.(2011年江蘇)在平面直角坐標(biāo)系中,M、N分別是橢圓的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線,垂足為C,連接AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k(1)當(dāng)直線PA平分線段MN,求k的值;(2)當(dāng)k=2時(shí),求點(diǎn)P到直線AB的距離d;(3)對(duì)任意k>0,求證:PAPB本小題主要考查橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)、直線方程、直線的垂直關(guān)系、點(diǎn)到直線的距離等基礎(chǔ)知識(shí),考查運(yùn)算求解能力和推理論證能力。解:(1)由題設(shè)知,所以線段MN中點(diǎn)的坐標(biāo)為,由于直線PA平分線段MN,故直線PA過(guò)線段MN的中點(diǎn),又直線PA過(guò)坐標(biāo) 原點(diǎn),所以(2)直線PA的方程解得于是直線AC的斜率為(3)解法一:將直線PA的方程代入則故直線AB的斜率為其方程為解得.于是直線PB的斜率因此解法二:設(shè).設(shè)直線PB,AB的斜率分別為因?yàn)镃在直線AB上,所以從而因此25.(2011年安徽)設(shè),點(diǎn)的坐標(biāo)為(1,1),點(diǎn)在拋物線上運(yùn)動(dòng),點(diǎn)滿足,經(jīng)過(guò)點(diǎn)與軸垂直的直線交拋物線于點(diǎn),點(diǎn)滿足,求點(diǎn)的軌跡方程。本題考查直線和拋物線的方程,平面向量的概念,性質(zhì)與運(yùn)算,動(dòng)點(diǎn)的軌跡方程等基本知識(shí),考查靈活運(yùn)用知識(shí)探究問(wèn)題和解決問(wèn)題的能力,全面考核綜合數(shù)學(xué)素養(yǎng).解:由知Q,M,P三點(diǎn)在同一條垂直于x軸的直線上,故可設(shè) 再設(shè)解得 將式代入式,消去,得 又點(diǎn)B在拋物線上,所以,再將式代入,得故所求點(diǎn)P的軌跡方程為26(2011年北京) 已知橢圓.過(guò)點(diǎn)(m,0)作圓的切線I交橢圓G于A,B兩點(diǎn).(I)求橢圓G的焦點(diǎn)坐標(biāo)和離心率;(II)將表示為m的函數(shù),并求的最大值.解:()由已知得所以所以橢圓G的焦點(diǎn)坐標(biāo)為離心率為()由題意知,.當(dāng)時(shí),切線l的方程,點(diǎn)A、B的坐標(biāo)分別為此時(shí)當(dāng)m=1時(shí),同理可得當(dāng)時(shí),設(shè)切線l的方程為由設(shè)A、B兩點(diǎn)的坐標(biāo)分別為,則又由l與圓所以由于當(dāng)時(shí),所以.因?yàn)榍耶?dāng)時(shí),|AB|=2,所以|AB|的最大值為2.27.(2011年福建)已知直線l:y=x+m,mR。(I)若以點(diǎn)M(2,0)為圓心的圓與直線l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;(II)若直線l關(guān)于x軸對(duì)稱的直線為,問(wèn)直線與拋物線C:x2=4y是否相切?說(shuō)明理由。本小題主要考查直線、圓、拋物線等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、分類與整合思想。滿分13分。解法一:(I)依題意,點(diǎn)P的坐標(biāo)為(0,m)因?yàn)椋?,解得m=2,即點(diǎn)P的坐標(biāo)為(0,2)從而圓的半徑故所求圓的方程為(II)因?yàn)橹本€的方程為所以直線的方程為由(1)當(dāng)時(shí),直線與拋物線C相切(2)當(dāng),那時(shí),直線與拋物線C不相切。綜上,當(dāng)m=1時(shí),直線與拋物線C相切;當(dāng)時(shí),直線與拋物線C不相切。解法二:(I)設(shè)所求圓的半徑為r,則圓的方程可設(shè)為依題意,所求圓與直線相切于點(diǎn)P(0,m),則解得所以所求圓的方程為(II)同解法一。28.(2011年廣東) 設(shè)圓C與兩圓中的一個(gè)內(nèi)切,另一個(gè)外切。(1)求C的圓心軌跡L的方程;(2)已知點(diǎn)M,且P為L(zhǎng)上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo) (1)解:設(shè)C的圓心的坐標(biāo)為,由題設(shè)條件知化簡(jiǎn)得L的方程為 (2)解:過(guò)M,F(xiàn)的直線方程為,將其代入L的方程得解得因T1在線段MF外,T2在線段MF內(nèi),故,若P不在直線MF上,在中有故只在T1點(diǎn)取得最大值2。29.(2011年湖北) 平面內(nèi)與兩定點(diǎn),連續(xù)的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上、兩點(diǎn)所成的曲線可以是圓、橢圓成雙曲線()求曲線的方程,并討論的形狀與值得關(guān)系;()當(dāng)時(shí),對(duì)應(yīng)的曲線為;對(duì)給定的,對(duì)應(yīng)的曲線為,設(shè)、是的兩個(gè)焦點(diǎn)。試問(wèn):在撒謊個(gè),是否存在點(diǎn),使得的面積。若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。本小題主要考查曲線與方程、圓錐曲線等基礎(chǔ)知識(shí),同時(shí)考查推理運(yùn)算的能力,以及分類與整合和數(shù)形結(jié)合的思想。 解:(I)設(shè)動(dòng)點(diǎn)為M,其坐標(biāo)為, 當(dāng)時(shí),由條件可得即,又的坐標(biāo)滿足故依題意,曲線C的方程為當(dāng)曲線C的方程為是焦點(diǎn)在y軸上的橢圓;當(dāng)時(shí),曲線C的方程為,C是圓心在原點(diǎn)的圓;當(dāng)時(shí),曲線C的方程為,C是焦點(diǎn)在x軸上的橢圓;當(dāng)時(shí),曲線C的方程為C是焦點(diǎn)在x軸上的雙曲線。(II)由(I)知,當(dāng)m=-1時(shí),C1的方程為當(dāng)時(shí),C2的兩個(gè)焦點(diǎn)分別為對(duì)于給定的,C1上存在點(diǎn)使得的充要條件是由得由得當(dāng)或時(shí),存在點(diǎn)N,使S=|m|a2;當(dāng)或時(shí),不存在滿足條件的點(diǎn)N,當(dāng)時(shí),由,可得令,則由,從而,于是由,可得綜上可得:當(dāng)時(shí),在C1上,存在點(diǎn)N,使得當(dāng)時(shí),在C1上,存在點(diǎn)N,使得當(dāng)時(shí),在C1上,不存在滿足條件的點(diǎn)N。30.(2011年湖南) 如圖7,橢圓的離心率為,x軸被曲線截得的線段長(zhǎng)等于C1的長(zhǎng)半軸長(zhǎng)。()求C1,C2的方程;()設(shè)C2與y軸的焦點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線與C2相交于點(diǎn)A,B,直線MA,MB分別與C1相交與D,E(i)證明:MDME;(ii)記MAB,MDE的面積分別是問(wèn):是否存在直線l,使得?請(qǐng)說(shuō)明理由。解 :()由題意知故C1,C2的方程分別為()(i)由題意知,直線l的斜率存在,設(shè)為k,則直線l的方程為.由得.設(shè)是上述方程的兩個(gè)實(shí)根,于是又點(diǎn)M的坐標(biāo)為(0,1),所以故MAMB,即MDME.(ii)設(shè)直線MA的斜率為k1,則直線MA的方程為解得則點(diǎn)A的坐標(biāo)為.又直線MB的斜率為,同理可得點(diǎn)B的坐標(biāo)為于是由得解得則點(diǎn)D的坐標(biāo)為又直線ME的斜率為,同理可得點(diǎn)E的坐標(biāo)為于是.因此由題意知,又由點(diǎn)A、B的坐標(biāo)可知,故滿足條件的直線l存在,且有兩條,其方程分別為31.(2011年遼寧) 如圖,已知橢圓C1的中心在原點(diǎn)O,長(zhǎng)軸左、右端點(diǎn)M,N在x軸上,橢圓C2的短軸為MN,且C1,C2的離心率都為e,直線lMN,l與C1交于兩點(diǎn),與C2交于兩點(diǎn),這四點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D(I)設(shè),求與的比值;(II)當(dāng)e變化時(shí),是否存在直線l,使得BOAN,并說(shuō)明理由解:(I)因?yàn)镃1,C2的離心率相同,故依題意可設(shè)設(shè)直線,分別與C1,C2的方程聯(lián)立,求得 4分當(dāng)表示A,B的縱坐標(biāo),可知 6分 (II)t=0時(shí)的l不符合題意.時(shí),BO/AN當(dāng)且僅當(dāng)BO的斜率kBO與AN的斜率kAN相等,即解得因?yàn)樗援?dāng)時(shí),不存在直線l,使得BO/AN;當(dāng)時(shí),存在直線l使得BO/AN. 12分32.(2011年全國(guó)大綱) 已知O為坐標(biāo)原點(diǎn),F(xiàn)為橢圓在y軸正半軸上的焦點(diǎn),過(guò)F且斜率為的直線與C交于A、B兩點(diǎn),點(diǎn)P滿足()證明:點(diǎn)P在C上;()設(shè)點(diǎn)P關(guān)于點(diǎn)O的對(duì)稱點(diǎn)為Q,證明:A、P、B、Q四點(diǎn)在同一圓上解:(I)F(0,1),的方程為,代入并化簡(jiǎn)得 設(shè)則由題意得所以點(diǎn)P的坐標(biāo)為經(jīng)驗(yàn)證,點(diǎn)P的坐標(biāo)為滿足方程故點(diǎn)P在橢圓C上。 (II)由和題設(shè)知, PQ的垂直平分線的方程為設(shè)AB的中點(diǎn)為M,則,AB的垂直平分線為的方程為由、得的交點(diǎn)為。 故|NP|=|NA|。又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|MQ|,由此知A、P、B、Q四點(diǎn)在以N為圓心,NA為半徑的圓上 33.(2011年全國(guó)新課標(biāo)) 在平面直角坐標(biāo)系xOy中, 已知點(diǎn)A(0,-1),B點(diǎn)在直線上,M點(diǎn)滿足,M點(diǎn)的軌跡為曲線C(I)求C的方程;(II)P為C上動(dòng)點(diǎn),為C在點(diǎn)P處的切線,求O點(diǎn)到距離的最小值解:()設(shè)M(x,y),由已知得B(x,-3),A(0,-1).所以=(-x,-1-y), =(0,-3-y), =(x,-2).再由題意可知(+) =0, 即(-x,-4-2y) (x,-2)=0.所以曲線C的方程式為y=x-2.()設(shè)P(x,y)為曲線C:y=x-2上一點(diǎn),因?yàn)閥=x,所以的斜率為x因此直線的方程為,即則O點(diǎn)到的距離.又,所以當(dāng)=0時(shí)取等號(hào),所以O(shè)點(diǎn)到距離的最小值為2.34.(2011年山東) 已知?jiǎng)又本€與橢圓C: 交于P、Q兩不同點(diǎn),且OPQ的面積=,其中O為坐標(biāo)原點(diǎn).()證明和均為定值;()設(shè)線段PQ的中點(diǎn)為M,求的最大值;()橢圓C上是否存在點(diǎn)D,E,G,使得?若存在,判斷DEG的形狀;若不存在,請(qǐng)說(shuō)明理由.(I)解:(1)當(dāng)直線的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于x軸對(duì)稱,所以因?yàn)樵跈E圓上,因此又因?yàn)樗杂伞⒌么藭r(shí) (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為由題意知m,將其代入,得,其中即(*)又所以因?yàn)辄c(diǎn)O到直線的距離為所以又整理得且符合(*)式,此時(shí)綜上所述,結(jié)論成立。 (II)解法一: (1)當(dāng)直線的斜率存在時(shí),由(I)知因此 (2)當(dāng)直線的斜率存在時(shí),由(I)知所以 所以,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.綜合(1)(2)得|OM|·|PQ|的最大值為解法二:因?yàn)?所以即當(dāng)且僅當(dāng)時(shí)等號(hào)成立。因此 |OM|·|PQ|的最大值為 (III)橢圓C上不存在三點(diǎn)D,E,G,使得證明:假設(shè)存在,由(I)得因此D,E,G只能在這四點(diǎn)中選取三個(gè)不同點(diǎn),而這三點(diǎn)的兩兩連線中必有一條過(guò)原點(diǎn),與矛盾,所以橢圓C上不存在滿足條件的三點(diǎn)D,E,G.35.(2011年陜西) 如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的攝影,M為PD上一點(diǎn),且()當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;()求過(guò)點(diǎn)(3,0)且斜率為的直線被C所截線段的長(zhǎng)度解:()設(shè)M的坐標(biāo)為(x,y)P的坐標(biāo)為(xp,yp)由已知得P在圓上,    ,即C的方程為()過(guò)點(diǎn)(3,0)且斜率為的直線方程為,設(shè)直線與C的交點(diǎn)為將直線方程代入C的方程,得 即        線段AB的長(zhǎng)度為注:求AB長(zhǎng)度時(shí),利用韋達(dá)定理或弦長(zhǎng)公式求得正確結(jié)果,同樣得分。36.(2011年上海) 已知平面上的線段及點(diǎn),在上任取一點(diǎn),線段長(zhǎng)度的最小值稱為點(diǎn)到線段的距離,記作。(1)求點(diǎn)到線段的距離;(2)設(shè)是長(zhǎng)為2的線段,求點(diǎn)集所表示圖形的面積;(3)寫出到兩條線段距離相等的點(diǎn)的集合,其中,是下列三組點(diǎn)中的一組。對(duì)于下列三組點(diǎn)只需選做一種,滿分分別是2分,6分,8分;若選擇了多于一種的情形,則按照序號(hào)較小的解答計(jì)分。 。 。 。解: 設(shè)是線段上一點(diǎn),則,當(dāng)時(shí),。 設(shè)線段的端點(diǎn)分別為,以直線為軸,的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系,則,點(diǎn)集由如下曲線圍成,其面積為。 選擇, 選擇。 選擇。37.(2011年四川) 橢圓有兩頂點(diǎn)A(-1,0)、B(1,0),過(guò)其焦點(diǎn)F(0,1)的直線l與橢圓交于C、D兩點(diǎn),并與x軸交于點(diǎn)P直線AC與直線BD交于點(diǎn)Q(I)當(dāng)|CD | = 時(shí),求直線l的方程;(II)當(dāng)點(diǎn)P異于A、B兩點(diǎn)時(shí),求證:為定值。 解:由已知可得橢圓方程為,設(shè)的方程為為的斜率。則的方程為38.(2011年天津)在平面直角坐標(biāo)系中,點(diǎn)為動(dòng)點(diǎn),分別為橢圓的左右焦點(diǎn)已知為等腰三角形()求橢圓的離心率;()設(shè)直線與橢圓相交于兩點(diǎn),是直線上的點(diǎn),滿足,求點(diǎn)的軌跡方程本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面向量等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì)及數(shù)形結(jié)合的數(shù)學(xué)思想,考查解決問(wèn)題能力與運(yùn)算能力.滿分13分. (I)解:設(shè) 由題意,可得即整理得(舍),或所以(II)解:由(I)知可得橢圓方程為直線PF2方程為A,B兩點(diǎn)的坐標(biāo)滿足方程組消去y并整理,得解得 得方程組的解不妨設(shè)設(shè)點(diǎn)M的坐標(biāo)為,由于是由即,化簡(jiǎn)得將所以因此,點(diǎn)M的軌跡方程是39.(2011年浙江)已知拋物線:,圓:的圓心為點(diǎn)M()求點(diǎn)M到拋物線的準(zhǔn)線的距離;()已知點(diǎn)P是拋物線上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓的兩條切線,交拋物線于A,B兩點(diǎn),若過(guò)M,P兩點(diǎn)的直線垂直于AB,求直線的方程本題主要考查拋物線的幾何性質(zhì),直線與拋物線、圓的位置關(guān)系等基礎(chǔ)知識(shí),同時(shí)考查解析幾何的基本思想方法和綜合解題能力。滿分15分。 (I)解:由題意可知,拋物線的準(zhǔn)線方程為: 所以圓心M(0,4)到準(zhǔn)線的距離是(II)解:設(shè),則題意得,設(shè)過(guò)點(diǎn)P的圓C2的切線方程為,即則即,設(shè)PA,PB的斜率為,則是上述方程的兩根,所以將代入由于是此方程的根,故,所以由,得,解得即點(diǎn)P的坐標(biāo)為,所以直線的方程為40.(2011年重慶)如題(20)圖,橢圓的中心為原點(diǎn),離心率,一條準(zhǔn)線的方程為 ()求該橢圓的標(biāo)準(zhǔn)方程; ()設(shè)動(dòng)點(diǎn)滿足:,其中是橢圓上的點(diǎn),直線與的斜率之積為,問(wèn):是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說(shuō)明理由解:(I)由解得,故橢圓的標(biāo)準(zhǔn)方程為 (II)設(shè),則由得因?yàn)辄c(diǎn)M,N在橢圓上,所以,故 設(shè)分別為直線OM,ON的斜率,由題設(shè)條件知因此所以所以P點(diǎn)是橢圓上的點(diǎn),設(shè)該橢圓的左、右焦點(diǎn)為F1,F(xiàn)2,則由橢圓的定義|PF1|+|PF2|為定值,又因,因此兩焦點(diǎn)的坐標(biāo)為

注意事項(xiàng)

本文(2011-2012年高考數(shù)學(xué) 真題分類匯編 圓錐曲線與方程(含解析))為本站會(huì)員(lisu****2020)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!