歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

高等數(shù)學(xué)之《中值定理》

  • 資源ID:15973314       資源大?。?span id="xgj5eav" class="font-tahoma">289.60KB        全文頁數(shù):24頁
  • 資源格式: PPT        下載積分:9.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 微信開放平臺登錄 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 支付寶    微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

高等數(shù)學(xué)之《中值定理》

,一、羅爾(Rolle)定理,例如,物理解釋:,變速直線運(yùn)動在折返點處,瞬時速度等于零.,幾何解釋:,證,注意:若羅爾定理的三個條件中有一個不滿足,其結(jié)論可能不成立.,例如,又例如,例1,證,由介值定理,即為方程的小于1的正實根.,矛盾,二、拉格朗日(Lagrange)中值定理,幾何解釋:,證,分析:,弦AB方程為,作輔助函數(shù),拉格朗日中值公式,注意:拉氏公式精確地表達(dá)了函數(shù)在一個區(qū)間上的增量與函數(shù)在這區(qū)間內(nèi)某點處的導(dǎo)數(shù)之間的關(guān)系.,拉格朗日中值定理又稱有限增量定理.,拉格朗日中值公式又稱有限增量公式.,微分中值定理,推論,例2,證,例3,證,由上式得,三、柯西(Cauchy)中值定理,幾何解釋:,證,作輔助函數(shù),例4,證,分析:,結(jié)論可變形為,四、小結(jié),Rolle 定理,Lagrange 中值定理,Cauchy 中值定理,羅爾定理、拉格朗日中值定理及柯西中值定理之間的關(guān)系;,注意定理成立的條件;,注意利用中值定理證明等式與不等式的步驟.,思考題,試舉例說明拉格朗日中值定理的條件缺一不可.,思考題解答,不滿足在閉區(qū)間上連續(xù)的條件;,且,不滿足在開區(qū)間內(nèi)可微的條件;,以上兩個都可說明問題.,練 習(xí) 題,練習(xí)題答案,

注意事項

本文(高等數(shù)學(xué)之《中值定理》)為本站會員(san****019)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!